如何对条件行进行常数的逐行填充。

huangapple go评论66阅读模式
英文:

How to impute a conditional row-wise imputation of a constant

问题

我是一个R新手,正在尝试编写似乎很简单的逻辑代码,但遇到了困难,希望能得到帮助!我正在尝试在我的数据集中为每行中的NA单元格填充常数值1,但仅针对包含2个或更少NA单元格的行。最终,我还将在填充后计算一列新的行均值。如果一行代码可以自动完成所有这些任务,那将非常好!

这是一个示例数据集供您参考。

tData <- data.frame(subID=c(1001,1002,1003,1004),
b1=c(1,1,2,NA),
b2=c(NA,1,1,NA),
b3=c(NA,2,2,NA),
b4=c(2,NA,1,NA))

我已经查看了各种基础和dplyr代码示例,但仍然困扰不解。

英文:

I am somewhat of an R newbie, am struggling with writing code for what seems like simple logic, and would appreciate any help! I am trying to impute a constant value of 1 for NA cells in each row of my data set but only for rows that have 2 or less NA cells. Ultimately, I will also be computing a new column with row-wise means after imputation. If one line of code code automagically achieve all of these things, that would be great!

Here is an example data set to work with.

tData &lt;- data.frame(subID=c(1001,1002,1003,1004),
b1=c(1,1,2,NA),
b2=c(NA,1,1,NA),
b3=c(NA,2,2,NA),
b4=c(2,NA,1,NA))

I have been looking at various base and dplyr code examples but am riding the struggle bus.

答案1

得分: 2

你可以在以下两行代码中完成此操作。

tData[is.na(tData) & rowSums(is.na(tData)) <= 2] <- 1
tData |>
  cbind(row_means=rowMeans(tData[-1]))

数据:

tData <- structure(list(subID = c(1001, 1002, 1003, 1004), b1 = c(1, 1, 2, NA), b2 = c(NA, 1, 1, NA), b3 = c(NA, 2, 2, NA), b4 = c(2, NA, 1, NA)), class = "data.frame", row.names = c(NA, -4L))
英文:

You can do this in these two lines.

tData[is.na(tData) &amp; rowSums(is.na(tData)) &lt;= 2] &lt;- 1
tData |&gt; cbind(row_means=rowMeans(tData[-1]))
#   subID b1 b2 b3 b4 row_means
# 1  1001  1  1  1  2      1.25
# 2  1002  1  1  2  1      1.25
# 3  1003  2  1  2  1      1.50
# 4  1004 NA NA NA NA        NA

Data:

tData &lt;- structure(list(subID = c(1001, 1002, 1003, 1004), b1 = c(1, 1, 
2, NA), b2 = c(NA, 1, 1, NA), b3 = c(NA, 2, 2, NA), b4 = c(2, 
NA, 1, NA)), class = &quot;data.frame&quot;, row.names = c(NA, -4L))

答案2

得分: 0

我们可以这样做:

library(dplyr)

tData %>%
  mutate(across(-subID, ~ifelse(rowSums(is.na(tData[2:5])) <= 2 & is.na(.), 1, .))) %>%
  rowwise() %>%
  mutate(mean_value = mean(c_across(-subID), na.rm = TRUE))
 subID    b1    b2    b3    b4 mean_value
  <dbl> <dbl> <dbl> <dbl> <dbl>      <dbl>
1  1001     1     1     1     2       1.25
2  1002     1     1     2     1       1.25
3  1003     2     1     2     1       1.5 
4  1004    NA    NA    NA    NA     NaN  
英文:

We can do this like this:

library(dplyr)

tData %&gt;% 
  mutate(across(-subID, ~ifelse(rowSums(is.na(tData[2:5])) &lt;= 2 &amp; is.na(.), 1, .))) %&gt;%
  rowwise() %&gt;%
  mutate(mean_value = mean(c_across(-subID), na.rm = TRUE))
 subID    b1    b2    b3    b4 mean_value
  &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;      &lt;dbl&gt;
1  1001     1     1     1     2       1.25
2  1002     1     1     2     1       1.25
3  1003     2     1     2     1       1.5 
4  1004    NA    NA    NA    NA     NaN  

huangapple
  • 本文由 发表于 2023年7月23日 21:41:59
  • 转载请务必保留本文链接:https://go.coder-hub.com/76748553.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定