将一个小的xarray.DataArray有效地插值到一个较大数组的坐标中?

huangapple go评论92阅读模式
英文:

Efficiently interpolating a small xarray.DataArray into coordinates of a larger array?

问题

我有一个大型、高分辨率的3D数据 (time: 200, y: 2000, x: 2000),类似于以下的xarray.DataArray

import xarray as xr
import numpy as np
import pandas as pd

time = pd.date_range("2019-01-01", "2021-12-30", periods=200)
y_large = np.linspace(-1000000, -1032000, 2000)
x_large = np.linspace(-1968000, -2000000, 2000)
data_large = np.random.randint(low=0, high=10, size=(200, 2000, 2000))

da_large = xr.DataArray(
    data=data_large,
    coords={"time": time, "y": y_large, "x": x_large},
    dims=("time", "y", "x"),
)
da_large

将一个小的xarray.DataArray有效地插值到一个较大数组的坐标中?

我还有一个较小的、低分辨率的数据 (time: 200, y: 100, x: 100),包含不同的数据,但覆盖了相同的 xy 范围:

y_small = np.linspace(-1000000, -1032000, 100)
x_small = np.linspace(-1968000, -2000000, 100)
data_small = np.random.randint(low=100, high=110, size=(200, 100, 100))

da_small = xr.DataArray(
    data=data_small,
    coords={"time": time, "y": y_small, "x": x_small},
    dims=("time", "y", "x"),
)
da_small

将一个小的xarray.DataArray有效地插值到一个较大数组的坐标中?

我需要将我的小型低分辨率数组 (da_small) 插值到大型数组 (da_large) 的高分辨率网格中,以便最终得到一个包含从 da_small 重采样的值的 time: 200, y: 2000, x: 2000 数组。

我以为可以使用 xarray.interp() 方法来完成这个操作,通过传入高分辨率坐标来从 da_small 中对每个 da_large 像素进行采样和插值:

da_small.interp(x=da_large.x, y=da_large.y, method="linear")

然而,我的挑战是,这个操作会导致内存使用急剧增加,从而导致内核崩溃。这对我来说是一个阻碍,因为我的实际数据可能比这个示例更大(高度/宽度可达数千像素,时间步深度可达数百)。

我的问题是:如何以更有效的方式执行这种操作(将小数组插值到大数组的网格中),避免这种大内存使用峰值?

(如果可能的话,我希望能够使用 xarray 兼容的解决方案,以便它可以与我的现有工作流程配合使用。)

英文:

I have a large, high-resolution 3D (time: 200, y: 2000, x: 2000) xarray.DataArray similar to this:

import xarray as xr
import numpy as np
import pandas as pd

time = pd.date_range("2019-01-01", "2021-12-30", periods=200)
y_large = np.linspace(-1000000, -1032000, 2000)
x_large = np.linspace(-1968000, -2000000, 2000)
data_large = np.random.randint(low=0, high=10, size=(200, 2000, 2000))

da_large = xr.DataArray(
    data=data_large,
    coords={"time": time, "y": y_large, "x": x_large},
    dims=("time", "y", "x"),
)
da_large

将一个小的xarray.DataArray有效地插值到一个较大数组的坐标中?

I also have a smaller, low-resolution (time: 200, y: 100, x: 100) xarray.DataArray containing different data, but covering the same x and y extents:

y_small = np.linspace(-1000000, -1032000, 100)
x_small = np.linspace(-1968000, -2000000, 100)
data_small = np.random.randint(low=100, high=110, size=(200, 100, 100))

da_small = xr.DataArray(
    data=data_small,
    coords={"time": time, "y": y_small, "x": x_small},
    dims=("time", "y", "x"),
)
da_small

将一个小的xarray.DataArray有效地插值到一个较大数组的坐标中?

I need to interpolate my small low-resolution array (da_small) into the higher resolution grid of my larger array (da_large), so that I end up with a time: 200, y: 2000, x: 2000 array containing values resampled from da_small.

I thought I'd be able to do this using xarray's .interp() method, by passing in my higher-res coordinates to sample and interpolate values from da_small into each pixel of da_large:

da_small.interp(x=da_large.x, y=da_large.y, method="linear")

However, my challenge is that this operation causes an extremely large spike in memory, which crashes my kernel. This is a blocker for me, as my actual data can be even larger than this example (up to several thousand pixels tall/wide and several hundred timesteps deep).

My question: How can I perform this kind of operation (re-scaling or interpolating a small array into the grid of a larger array) in a more efficient way, avoiding such a large peak memory usage?

(If possible, I'd prefer a solution compatible with xarray so it can slot into my existing workflows.)

答案1

得分: 3

(If possible, I'd prefer a solution compatible with xarray so it can slot into my existing workflows)

所以您可以考虑使用xarray与Dask
这比xarray.interp()方法要好,因为后者试图将所有计算结果都存储在内存中。

Dask

Xarray是一个开源项目和Python包,扩展了Pandas的标记数据功能,适用于N维数组样式的数据集。它与NumPyPandas具有类似的API,并在底层支持DaskNumPy数组。

而且,如果您可以使用Dask,那么您就可以使用并行化或分块

Dask数组由许多NumPy(或类似NumPy的)数组组成。这些数组的排列方式会显著影响性能。例如,对于一个方形数组,您可以将块排列在行上、列上,或者更像是方形的方式。不同排列的NumPy数组对不同的算法来说速度快或慢。

在这里,我更关心内存管理,使用分块将数据划分为更小的块,以便更容易管理。您可以根据内存容量来指定块大小:

import xarray as xr
import numpy as np
import pandas as pd

# 定义大型高分辨率DataArray
time = pd.date_range("2019-01-01", "2021-12-30", periods=200)
y_large = np.linspace(-1000000, -1032000, 2000)
x_large = np.linspace(-1968000, -2000000, 2000)
data_large = np.random.randint(low=0, high=10, size=(200, 2000, 2000))

da_large = xr.DataArray(
    data=data_large,
    coords={"time": time, "y": y_large, "x": x_large},
    dims=("time", "y", "x"),
)

# 定义小型低分辨率DataArray
y_small = np.linspace(-1000000, -1032000, 100)
x_small = np.linspace(-1968000, -2000000, 100)
data_small = np.random.randint(low=100, high=110, size=(200, 100, 100))

da_small = xr.DataArray(
    data=data_small,
    coords={"time": time, "y": y_small, "x": x_small},
    dims=("time", "y", "x"),
)

# 使用分块转换为Dask数组
da_large_dask = da_large.chunk({'time': 10, 'y': 500, 'x': 500})
da_small_dask = da_small.chunk({'time': 10, 'y': 25, 'x': 25})

# 执行插值操作
da_interp_dask = da_small_dask.interp(x=da_large_dask.x, y=da_large_dask.y, method="linear")

# 使用Dask计算结果
with dask.config.set(scheduler='threads'):  # 或者'scheduler='processes',根据您的需求
    da_interp = da_interp_dask.compute()

您可以使用Dask将数据分成块并在这些块上执行计算,而不是一次在整个数组上执行计算。这应该通过仅在任何给定时间内保留必要的数据来减少内存使用。

分块大小并不直接指定要使用的内存量,但它们确实影响内存使用。块越大,每次计算将需要更多内存,因为会加载更多数据。

您可以通过修改传递给.chunk()方法的字典中的数字来更改块大小。例如,如果您想减少内存使用量一半,可以将每个维度的块大小减小约sqrt(2)(因为内存使用量与三个维度的乘积成正比):

da_large_dask = da_large.chunk({'time': 7, 'y': 350, 'x': 350})
da_small_dask = da_small.chunk({'time': 7, 'y': 18, 'x': 18})

或者您可以使用dask.array.core.normalize_chunks来尝试根据数组大小和内存限制计算块大小。

英文:

> (If possible, I'd prefer a solution compatible with xarray so it can slot into my existing workflows

So you might consider using xarray with Dask.
That would be better than xarray's .interp() method, which is trying to hold all the computed results in memory

> ## Dask
>
> Xarray is an open source project and Python package that extends the labeled data functionality of Pandas to N-dimensional array-like datasets. It shares a similar API to NumPy and Pandas and supports both Dask and NumPy arrays under the hood.

And, if you can use Dask, then you have access to parallelization or chunking

> Dask arrays are composed of many NumPy (or NumPy-like) arrays.
How these arrays are arranged can significantly affect performance. For example, for a square array you might arrange your chunks along rows, along columns, or in a more square-like fashion. Different arrangements of NumPy arrays will be faster or slower for different algorithms.

Here, I am less interested in raw performance, and more about memory management using chunking, which divides the data into smaller chunks that are more manageable.
You can specify the chunk size according to your memory capacity:

import xarray as xr
import numpy as np
import pandas as pd

# Defining the large high-resolution DataArray
time = pd.date_range("2019-01-01", "2021-12-30", periods=200)
y_large = np.linspace(-1000000, -1032000, 2000)
x_large = np.linspace(-1968000, -2000000, 2000)
data_large = np.random.randint(low=0, high=10, size=(200, 2000, 2000))

da_large = xr.DataArray(
    data=data_large,
    coords={"time": time, "y": y_large, "x": x_large},
    dims=("time", "y", "x"),
)

# Defining the small low-resolution DataArray
y_small = np.linspace(-1000000, -1032000, 100)
x_small = np.linspace(-1968000, -2000000, 100)
data_small = np.random.randint(low=100, high=110, size=(200, 100, 100))

da_small = xr.DataArray(
    data=data_small,
    coords={"time": time, "y": y_small, "x": x_small},
    dims=("time", "y", "x"),
)

# Convert to Dask arrays using chunking
da_large_dask = da_large.chunk({'time': 10, 'y': 500, 'x': 500})
da_small_dask = da_small.chunk({'time': 10, 'y': 25, 'x': 25})

# Perform interpolation operation
da_interp_dask = da_small_dask.interp(x=da_large_dask.x, y=da_large_dask.y, method="linear")

# Compute the result using Dask
with dask.config.set(scheduler='threads'):  # or 'processes', depending on your needs
    da_interp = da_interp_dask.compute()

You would use Dask to divide your data into chunks and performs computations on these chunks instead of the whole array at once.
That should reduce memory usage by only keeping the necessary data in memory at any given time.

The chunk sizes do not directly specify the amount of memory to use, but they do impact memory usage. The larger the chunk, the more memory each computation will need, as more data is loaded at once.

You can change the chunk sizes by modifying the numbers in the dictionary passed to the .chunk() method. For instance, if you want to halve the memory usage, you can reduce each dimension of the chunk size by about sqrt(2) (as memory usage is proportional to the product of the three dimensions):

da_large_dask = da_large.chunk({'time': 7, 'y': 350, 'x': 350})
da_small_dask = da_small.chunk({'time': 7, 'y': 18, 'x': 18})

Or you can use dask.array.core.normalize_chunks to try and calculate chunk sizes based on array size and the memory limit.

答案2

得分: 1

使用xarray的.interp()将一个小数组插值到一个较大的网格中,可能会导致显著的内存消耗,特别是对于大型数据集。为了更高效地执行此操作并避免大内存峰值,您可以使用xarray的.reindex()方法结合Dask进行惰性计算和分块处理。Dask允许您在数据的较小、可管理的块上执行计算,从而减少内存开销。

以下是如何实现这一目标的逐步指南:

  1. 如果尚未安装所需的库,请安装:
pip install xarray dask
  1. 导入必要的模块:
import xarray as xr
import dask.array as da
  1. 使用da.from_array()将您的DataArrays转换为Dask数组:
da_large = da.from_array(da_large)
da_small = da.from_array(da_small)
  1. 使用da.reindex()执行插值:
da_interp = da_small.reindex(y=da_large.y, x=da_large.x, method="linear")
  1. 将生成的Dask数组转换回xarray DataArray:
da_interp = xr.DataArray(da_interp, coords={"time": time, "y": da_large.y, "x": da_large.x}, dims=("time", "y", "x"))

现在,da_interp将是一个基于Dask的xarray DataArray,其中包含了从da_small插值到da_large网格中的值。由于Dask在较小的块上惰性计算结果,这个操作不会立即消耗大量内存,从而使其更具内存效率。

如果您需要在da_interp上执行进一步的计算,请记得使用Dask感知的函数,它们可以通过将计算拆分成较小的任务来优化计算。

此外,您可以通过在da.from_array()中指定chunks参数来控制块的大小。例如,设置chunks={"time": 1, "y": 100, "x": 100}将创建大小为1时间步长乘以100行乘以100列的块,可以进一步减少内存开销。

通过同时利用Dask和xarray,您可以在保持与xarray功能和工作流的兼容性的同时高效处理大型数据集。

英文:

Interpolating a small array into a larger grid using xarray's .interp() can indeed lead to significant memory consumption, especially for large datasets. To perform this operation more efficiently and avoid the large memory spike, you can use xarray's .reindex() method along with Dask for lazy computation and chunking. Dask allows you to perform computations on smaller, manageable chunks of the data, reducing memory overhead.

Here's a step-by-step guide on how to achieve this:

  1. Install the required libraries if you haven't already:
pip install xarray dask
  1. Import the necessary modules:
import xarray as xr
import dask.array as da
  1. Convert your DataArrays to Dask arrays using da.from_array():
da_large = da.from_array(da_large)
da_small = da.from_array(da_small)
  1. Use da.reindex() to perform the interpolation:
da_interp = da_small.reindex(y=da_large.y, x=da_large.x, method="linear")
  1. Convert the resulting Dask array back to an xarray DataArray:
da_interp = xr.DataArray(da_interp, coords={"time": time, "y": da_large.y, "x": da_large.x}, dims=("time", "y", "x"))

Now, da_interp will be a Dask-based xarray DataArray containing the interpolated values from da_small in the grid of da_large. This operation will not immediately consume a large amount of memory since Dask computes the results lazily on smaller chunks, making it more memory-efficient.

If you need to perform further computations on da_interp, remember to use Dask-aware functions, as they can optimize the computation by breaking it down into smaller tasks.

Additionally, you can control the chunk size by specifying the chunks parameter in da.from_array(). For example, setting chunks={"time": 1, "y": 100, "x": 100} will create chunks of size 1 timestep by 100 rows by 100 columns, which can further reduce memory overhead.

By leveraging Dask and xarray together, you can efficiently handle large datasets while maintaining compatibility with xarray's functionality and workflow.

huangapple
  • 本文由 发表于 2023年7月23日 15:42:11
  • 转载请务必保留本文链接:https://go.coder-hub.com/76747123.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定