英文:
Alternatives to Scipy in Global optimization
问题
我正在尝试找到一个多元函数的全局最小值(ndim = 9
)。该函数具有非常窄的底部,X的轻微变化会导致输出值迅速上升。我尝试了各种scipy方法,如differential_evolution
、basin_hopping
、dual_annealing
和shgo
。它们表现得相当不错,但我仍然最终陷入了局部最小值而不是绝对全局最小值。
您建议尝试哪些其他软件包/算法?
英文:
I'm trying to find a global minimum of a multivariate function (ndim = 9
). The function has very narrow bottoms and a slight change to the X causes the output value to rise quite quickly. I tried various scipy methods, like differential_evolution
, basin_hopping
, dual_annealing
, shgo
. They perform quite well, but I still end up in the local minimum rather than the absolute global minimum.
What other packages/algorithms would you suggest trying?
答案1
得分: 1
你可以尝试使用nlopt。我已经使用过它几次,主要用于局部优化,大部分情况下是在C++中(它还有Python绑定),但看起来它可能也具有一些SciPy没有的全局优化算法。我不确定它是否会更好,但也许值得一试。祝你好运!
英文:
You could try nlopt. I've used it a few times, mostly for local optimization and mostly in C++ (it also has Python bindings), but it looks like it also might have some global optimization algorithms that SciPy doesn't. I'm not sure if it will be better, but perhaps worth a shot. Good luck!
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论