英文:
How to save multiple multiple csv files at once with changing title?
问题
I'm currently opening data from over a 1,000 csv files, each file has a date attached to it. I have modified the data with some code and would like to save the same amount of files with the new data. When I run the code, the computer seems to put all the csv files in the same folder like I wanted it to, but each one that I open is the same exact data meaning it's only capturing one day's worth of data and printing it over 1,000 times.
import glob
import numpy as np
import pandas as pd
filepaths = glob.glob('C:/Users/Freedom/Desktop/Pronimances/*.csv')
for path in filepaths:
data = np.loadtxt(path, delimiter = ',', skiprows = 1, dtype = 'int', usecols = (0,1,2,3,4,5,6), unpack = True)
times = data[0]
nums = data[1]
Left = data[2]
Right = data[3]
y = data[4]
area = data[6]
#code that manipulates data and creates new lists has been omitted
dict = {'Time': list2, 'Prominence Number': realpromID, 'Left Edge (Pixels)': Left, 'Right Edge (Pixels)': listd, 'Prominence Area': listb}
for i in range(1323):
filename = realdates[i]
df = pd.DataFrame(dict)
df.to_csv(f'E:Arman/Prominence_Tracking/{filename}.csv')
The "realdates" list is just a list of all the dates that the files are from. Here is a picture of the results I've gotten:
Current Results
Why isn't the program working the way I want it to? Does it have something to do with the for loop. Any help would be much appreciated.
Update: Here's the error I'm getting:
FileNotFoundError: [Errno 2] No such file or directory: 'C:/Users/Freedom/Desktop/Prom_Tracking/[20090325, 20090326, 20090327, 20090330, 20090401, ... (long list of dates) ... 20140507, 20140508, 20140509, 20140511, 20140512, 20140513, 20140514, 20140515, 20140516, 20140518, ... (continued)'
英文:
I'm currently opening opening data from over a 1,000 csv files, each file has a date attached to it. I have modified the data with some code and would like to save the same amount of files with the new data. When I run the code, the computer seems to put all the csv files in the same folder like I wanted it to, but each one that I open is the same exact data meaning it's only capturing one day's worth of data and printing it over 1,000 times. Here is all the necessary code:
import glob
import numpy as np
import pandas as pd
filepaths = glob.glob('C:/Users/Freedom/Desktop/Pronimances/*.csv')
for path in filepaths:
data = np.loadtxt(path, delimiter = ',', skiprows = 1, dtype = 'int', usecols = (0,1,2,3,4,5,6), unpack = True)
times = data[0]
nums = data[1]
Left = data[2]
Right = data[3]
y = data[4]
area = data[6]
#code that manipulates data and creates new lists has been omitted
dict = {'Time': list2, 'Prominence Number': realpromID, 'Left Edge (Pixels)': Left, 'Right Edge (Pixels)': listd, 'Prominence Area': listb}
for i in range(1323):
filename = realdates[i]
df = pd.DataFrame(dict)
df.to_csv(f'E:Arman/Prominence_Tracking_Test/{filename}.csv')
The "realdates" list is just a list of all the dates that the files are from. Here is a picture of the results I've gotten:
Current Results
Why isn't the program working the way I want it to? Does it have something to do with the for loop. Any help would be much appreciated.
Update: Here's the error I'm getting:
FileNotFoundError Traceback (most recent call last)
Cell In[26], line 139
136 data_dict = {'Time': list2, 'Prominence Number': realpromID, 'Left Edge (Pixels)': Left, 'Right Edge (Pixels)': listd, 'Prominence Area': listb}
138 df = pd.DataFrame(data_dict)
--> 139 df.to_csv(f'C:/Users/Freedom/Desktop/Prom_Tracking/{realdates}.csv')
File E:\Anaconda\lib\site-packages\pandas\util\_decorators.py:211, in deprecate_kwarg.<locals>._deprecate_kwarg.<locals>.wrapper(*args, **kwargs)
209 else:
210 kwargs[new_arg_name] = new_arg_value
--> 211 return func(*args, **kwargs)
File E:\Anaconda\lib\site-packages\pandas\core\generic.py:3720, in NDFrame.to_csv(self, path_or_buf, sep, na_rep, float_format, columns, header, index, index_label, mode, encoding, compression, quoting, quotechar, lineterminator, chunksize, date_format, doublequote, escapechar, decimal, errors, storage_options)
3709 df = self if isinstance(self, ABCDataFrame) else self.to_frame()
3711 formatter = DataFrameFormatter(
3712 frame=df,
3713 header=header,
(...)
3717 decimal=decimal,
3718 )
-> 3720 return DataFrameRenderer(formatter).to_csv(
3721 path_or_buf,
3722 lineterminator=lineterminator,
3723 sep=sep,
3724 encoding=encoding,
3725 errors=errors,
3726 compression=compression,
3727 quoting=quoting,
3728 columns=columns,
3729 index_label=index_label,
3730 mode=mode,
3731 chunksize=chunksize,
3732 quotechar=quotechar,
3733 date_format=date_format,
3734 doublequote=doublequote,
3735 escapechar=escapechar,
3736 storage_options=storage_options,
3737 )
File E:\Anaconda\lib\site-packages\pandas\util\_decorators.py:211, in deprecate_kwarg.<locals>._deprecate_kwarg.<locals>.wrapper(*args, **kwargs)
209 else:
210 kwargs[new_arg_name] = new_arg_value
--> 211 return func(*args, **kwargs)
File E:\Anaconda\lib\site-packages\pandas\io\formats\format.py:1189, in DataFrameRenderer.to_csv(self, path_or_buf, encoding, sep, columns, index_label, mode, compression, quoting, quotechar, lineterminator, chunksize, date_format, doublequote, escapechar, errors, storage_options)
1168 created_buffer = False
1170 csv_formatter = CSVFormatter(
1171 path_or_buf=path_or_buf,
1172 lineterminator=lineterminator,
(...)
1187 formatter=self.fmt,
1188 )
-> 1189 csv_formatter.save()
1191 if created_buffer:
1192 assert isinstance(path_or_buf, StringIO)
File E:\Anaconda\lib\site-packages\pandas\io\formats\csvs.py:241, in CSVFormatter.save(self)
237 """
238 Create the writer & save.
239 """
240 # apply compression and byte/text conversion
--> 241 with get_handle(
242 self.filepath_or_buffer,
243 self.mode,
244 encoding=self.encoding,
245 errors=self.errors,
246 compression=self.compression,
247 storage_options=self.storage_options,
248 ) as handles:
249
250 # Note: self.encoding is irrelevant here
251 self.writer = csvlib.writer(
252 handles.handle,
253 lineterminator=self.lineterminator,
(...)
258 quotechar=self.quotechar,
259 )
261 self._save()
File E:\Anaconda\lib\site-packages\pandas\io\common.py:856, in get_handle(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)
851 elif isinstance(handle, str):
852 # Check whether the filename is to be opened in binary mode.
853 # Binary mode does not support 'encoding' and 'newline'.
854 if ioargs.encoding and "b" not in ioargs.mode:
855 # Encoding
--> 856 handle = open(
857 handle,
858 ioargs.mode,
859 encoding=ioargs.encoding,
860 errors=errors,
861 newline="",
862 )
863 else:
864 # Binary mode
865 handle = open(handle, ioargs.mode)
FileNotFoundError: [Errno 2] No such file or directory: 'C:/Users/Freedom/Desktop/Prom_Tracking/[20090325, 20090326, 20090327, 20090330, 20090401, 20090402, 20090403, 20090406, 20090407, 20090408, 20090409, 20090413, 20090416, 20090417, 20090420, 20090421, 20090422, 20090504, 20090507, 20090508, 20090511, 20090512, 20090513, 20090514, 20090515, 20090520, 20090521, 20090522, 20090526, 20090527, 20090528, 20090529, 20090602, 20090608, 20090609, 20090611, 20090612, 20090615, 20090618, 20090619, 20090620, 20090622, 20090623, 20090625, 20090626, 20090629, 20090630, 20090701, 20090702, 20090706, 20090707, 20090708, 20090709, 20090710, 20090713, 20090714, 20090715, 20090716, 20090717, 20090720, 20090721, 20090722, 20090727, 20090728, 20090729, 20090730, 20090804, 20090805, 20090806, 20090807, 20090810, 20090813, 20090824, 20090825, 20090826, 20090827, 20090828, 20090831, 20090902, 20090903, 20090904, 20090908, 20090909, 20090910, 20090911, 20090914, 20090915, 20090916, 20090917, 20090918, 20090921, 20090922, 20090923, 20090924, 20090925, 20090928, 20090929, 20090930, 20091001, 20091002, 20091003, 20091005, 20091006, 20091007, 20091008, 20091009, 20091015, 20091016, 20091019, 20091020, 20091022, 20091023, 20091026, 20091028, 20091029, 20091030, 20091102, 20091103, 20091104, 20091105, 20091106, 20091110, 20091116, 20091117, 20091118, 20091119, 20091120, 20091123, 20091124, 20091125, 20091201, 20091202, 20091204, 20091209, 20091210, 20091214, 20091216, 20091217, 20091218, 20091223, 20091224, 20100105, 20100106, 20100107, 20100111, 20100113, 20100114, 20100128, 20100203, 20100211, 20100212, 20100215, 20100216, 20100218, 20100223, 20100225, 20100302, 20100303, 20100304, 20100305, 20100311, 20100312, 20100315, 20100316, 20100317, 20100318, 20100319, 20100322, 20100323, 20100324, 20100325, 20100326, 20100330, 20100331, 20100401, 20100409, 20100413, 20100414, 20100415, 20100416, 20100419, 20100420, 20100423, 20100426, 20100427, 20100428, 20100429, 20100503, 20100504, 20100505, 20100506, 20100507, 20100510, 20100511, 20100512, 20100513, 20100514, 20100518, 20100519, 20100520, 20100521, 20100524, 20100525, 20100526, 20100527, 20100601, 20100602, 20100603, 20100604, 20100607, 20100608, 20100609, 20100610, 20100611, 20100614, 20100615, 20100616, 20100617, 20100618, 20100621, 20100622, 20100623, 20100624, 20100625, 20100628, 20100629, 20100630, 20100701, 20100702, 20100707, 20100709, 20100712, 20100713, 20100714, 20100716, 20100719, 20100720, 20100721, 20100722, 20100723, 20100726, 20100727, 20100728, 20100729, 20100730, 20100802, 20100803, 20100804, 20100805, 20100806, 20100809, 20100810, 20100811, 20100812, 20100813, 20100816, 20100819, 20100820, 20100823, 20100824, 20100826, 20100827, 20100830, 20100831, 20100901, 20100902, 20100903, 20100907, 20100908, 20100909, 20100910, 20100913, 20100914, 20100915, 20100916, 20100917, 20100920, 20100921, 20100922, 20100923, 20100924, 20100927, 20101004, 20101005, 20101007, 20101008, 20101011, 20101012, 20101013, 20101015, 20101020, 20101022, 20101026, 20101027, 20101028, 20101029, 20101101, 20101103, 20101104, 20101105, 20101109, 20101110, 20101111, 20101112, 20101115, 20101116, 20101117, 20101118, 20101122, 20101123, 20101124, 20101129, 20101130, 20101201, 20101202, 20101206, 20101207, 20101208, 20101209, 20101213, 20101214, 20101223, 20110104, 20110107, 20110110, 20110112, 20110113, 20110115, 20110116, 20110118, 20110119, 20110120, 20110121, 20110124, 20110126, 20110127, 20110128, 20110131, 20110201, 20110202, 20110203, 20110204, 20110207, 20110208, 20110209, 20110210, 20110211, 20110214, 20110217, 20110222, 20110223, 20110224, 20110225, 20110228, 20110302, 20110303, 20110304, 20110308, 20110309, 20110310, 20110311, 20110314, 20110315, 20110316, 20110318, 20110323, 20110324, 20110328, 20110329, 20110330, 20110331, 20110401, 20110404, 20110405, 20110407, 20110411, 20110412, 20110413, 20110414, 20110415, 20110418, 20110419, 20110420, 20110421, 20110425, 20110426, 20110427, 20110428, 20110511, 20110512, 20110513, 20110519, 20110520, 20110523, 20110524, 20110525, 20110526, 20110527, 20110531, 20110601, 20110602, 20110603, 20110606, 20110607, 20110608, 20110609, 20110610, 20110613, 20110614, 20110615, 20110616, 20110617, 20110620, 20110621, 20110622, 20110623, 20110624, 20110628, 20110629, 20110630, 20110701, 20110707, 20110708, 20110709, 20110710, 20110711, 20110712, 20110713, 20110714, 20110715, 20110716, 20110717, 20110718, 20110719, 20110720, 20110721, 20110722, 20110723, 20110724, 20110726, 20110727, 20110728, 20110730, 20110801, 20110802, 20110803, 20110804, 20110805, 20110806, 20110807, 20110808, 20110809, 20110810, 20110812, 20110813, 20110814, 20110815, 20110816, 20110817, 20110818, 20110819, 20110820, 20110821, 20110823, 20110824, 20110825, 20110827, 20110828, 20110829, 20110830, 20110831, 20110901, 20110902, 20110903, 20110904, 20110906, 20110907, 20110908, 20110909, 20110910, 20110911, 20110912, 20110914, 20110915, 20110916, 20110917, 20110918, 20110919, 20110920, 20110921, 20110923, 20110924, 20110925, 20110926, 20110927, 20110928, 20110929, 20110930, 20111001, 20111002, 20111003, 20111004, 20111006, 20111007, 20111010, 20111011, 20111012, 20111013, 20111014, 20111015, 20111017, 20111018, 20111019, 20111020, 20111021, 20111025, 20111026, 20111027, 20111028, 20111031, 20111101, 20111103, 20111107, 20111108, 20111109, 20111114, 20111115, 20111116, 20111117, 20111118, 20111122, 20111130, 20111205, 20111206, 20111207, 20111208, 20111209, 20111214, 20111215, 20111219, 20111221, 20111222, 20111223, 20120103, 20120104, 20120105, 20120106, 20120109, 20120110, 20120112, 20120113, 20120117, 20120118, 20120119, 20120120, 20120124, 20120125, 20120126, 20120130, 20120131, 20120201, 20120202, 20120203, 20120208, 20120209, 20120210, 20120214, 20120217, 20120218, 20120219, 20120221, 20120222, 20120223, 20120224, 20120229, 20120301, 20120302, 20120306, 20120307, 20120308, 20120309, 20120313, 20120314, 20120315, 20120316, 20120320, 20120321, 20120322, 20120323, 20120327, 20120328, 20120329, 20120330, 20120402, 20120403, 20120404, 20120405, 20120409, 20120410, 20120412, 20120416, 20120417, 20120418, 20120419, 20120420, 20120423, 20120424, 20120427, 20120430, 20120501, 20120502, 20120503, 20120504, 20120507, 20120508, 20120509, 20120510, 20120511, 20120514, 20120516, 20120517, 20120518, 20120520, 20120521, 20120522, 20120523, 20120524, 20120525, 20120527, 20120529, 20120530, 20120531, 20120601, 20120602, 20120603, 20120604, 20120605, 20120606, 20120607, 20120609, 20120610, 20120611, 20120612, 20120613, 20120614, 20120615, 20120617, 20120618, 20120619, 20120620, 20120621, 20120622, 20120623, 20120624, 20120625, 20120626, 20120627, 20120628, 20120629, 20120630, 20120701, 20120702, 20120703, 20120705, 20120706, 20120707, 20120708, 20120709, 20120710, 20120711, 20120714, 20120715, 20120716, 20120717, 20120719, 20120720, 20120721, 20120723, 20120724, 20120725, 20120727, 20120728, 20120729, 20120730, 20120731, 20120801, 20120802, 20120803, 20120806, 20120807, 20120808, 20120809, 20120810, 20120812, 20120814, 20120815, 20120818, 20120819, 20120820, 20120821, 20120823, 20120824, 20120825, 20120826, 20120827, 20120828, 20120829, 20120830, 20120831, 20120901, 20120903, 20120906, 20120907, 20120908, 20120911, 20120912, 20120913, 20120914, 20120916, 20120917, 20120918, 20120919, 20120920, 20120921, 20120924, 20120925, 20120926, 20120927, 20120928, 20120929, 20120930, 20121001, 20121002, 20121003, 20121004, 20121005, 20121009, 20121010, 20121011, 20121015, 20121016, 20121017, 20121018, 20121019, 20121022, 20121023, 20121025, 20121027, 20121031, 20121101, 20121102, 20121103, 20121106, 20121107, 20121113, 20121114, 20121119, 20121120, 20121121, 20121126, 20121128, 20121203, 20121204, 20121205, 20121206, 20121207, 20121211, 20121217, 20121219, 20121220, 20121221, 20130102, 20130103, 20130104, 20130107, 20130108, 20130111, 20130114, 20130115, 20130116, 20130118, 20130122, 20130129, 20130130, 20130131, 20130204, 20130205, 20130206, 20130207, 20130212, 20130214, 20130215, 20130221, 20130222, 20130225, 20130226, 20130227, 20130228, 20130301, 20130304, 20130305, 20130306, 20130311, 20130314, 20130318, 20130319, 20130321, 20130322, 20130325, 20130326, 20130327, 20130328, 20130401, 20130402, 20130403, 20130404, 20130405, 20130409, 20130410, 20130411, 20130412, 20130415, 20130416, 20130417, 20130423, 20130424, 20130426, 20130429, 20130430, 20130501, 20130503, 20130509, 20130510, 20130513, 20130514, 20130515, 20130516, 20130517, 20130520, 20130521, 20130523, 20130524, 20130526, 20130528, 20130529, 20130530, 20130603, 20130604, 20130605, 20130606, 20130607, 20130609, 20130611, 20130612, 20130613, 20130614, 20130617, 20130618, 20130619, 20130620, 20130621, 20130625, 20130626, 20130627, 20130628, 20130703, 20130708, 20130709, 20130713, 20130715, 20130716, 20130717, 20130718, 20130722, 20130723, 20130724, 20130725, 20130727, 20130728, 20130729, 20130730, 20130731, 20130801, 20130802, 20130803, 20130804, 20130805, 20130806, 20130807, 20130808, 20130809, 20130810, 20130811, 20130812, 20130813, 20130814, 20130815, 20130816, 20130817, 20130818, 20130819, 20130820, 20130821, 20130822, 20130823, 20130824, 20130825, 20130827, 20130828, 20130830, 20130903, 20130904, 20130905, 20130906, 20130909, 20130910, 20130911, 20130912, 20130913, 20130914, 20130915, 20130916, 20130917, 20130918, 20130919, 20130920, 20130923, 20130927, 20130928, 20130929, 20130930, 20131001, 20131002, 20131004, 20131006, 20131008, 20131010, 20131015, 20131016, 20131017, 20131018, 20131019, 20131025, 20131026, 20131030, 20131031, 20131101, 20131104, 20131105, 20131106, 20131107, 20131108, 20131113, 20131114, 20131115, 20131118, 20131119, 20131120, 20131125, 20131126, 20131127, 20131203, 20131204, 20131205, 20131206, 20131209, 20131210, 20131211, 20131213, 20131216, 20131217, 20131220, 20131222, 20131223, 20131224, 20140106, 20140108, 20140110, 20140114, 20140115, 20140116, 20140118, 20140119, 20140120, 20140122, 20140123, 20140125, 20140127, 20140128, 20140129, 20140201, 20140203, 20140205, 20140208, 20140209, 20140210, 20140211, 20140212, 20140214, 20140217, 20140218, 20140219, 20140220, 20140221, 20140222, 20140223, 20140224, 20140225, 20140305, 20140306, 20140307, 20140308, 20140309, 20140310, 20140312, 20140314, 20140315, 20140316, 20140318, 20140321, 20140322, 20140324, 20140327, 20140329, 20140331, 20140406, 20140407, 20140408, 20140410, 20140413, 20140414, 20140415, 20140419, 20140420, 20140421, 20140423, 20140424, 20140425, 20140427, 20140428, 20140502, 20140503, 20140504, 20140505, 20140507, 20140508, 20140510, 20140511, 20140512, 20140515, 20140516, 20140517, 20140519, 20140521, 20140523, 20140524, 20140525, 20140526, 20140527, 20140529, 20140531, 20140601, 20140602, 20140603, 20140604, 20140606, 20140607, 20140611, 20140612, 20140614, 20140615, 20140616, 20140618, 20140619, 20140620, 20140622, 20140623, 20140624, 20140625, 20140627, 20140628, 20140630, 20140701, 20140702, 20140703, 20140704, 20140706, 20140707, 20140709, 20140710, 20140711, 20140712, 20140713, 20140715, 20140717, 20140718, 20140720, 20140721, 20140723, 20140724, 20140725, 20140726, 20140729, 20140730, 20140731, 20140801, 20140804, 20140805, 20140807, 20140809, 20140810, 20140811, 20140812, 20140813, 20140814, 20140817, 20140818, 20140820, 20140821, 20140822, 20140824, 20140826, 20140827, 20140831, 20140901, 20140902, 20140903, 20140904, 20140906, 20140909, 20140911, 20140912, 20140913, 20140914, 20140915, 20140918, 20140919, 20140920, 20140921, 20140922, 20140923, 20140924, 20140925, 20140926, 20140927, 20140928, 20140929, 20140930, 20141002, 20141004, 20141005, 20141016, 20141017, 20141018, 20141019, 20141021, 20141022, 20141023, 20141024, 20141025, 20141026, 20141028, 20141029, 20141030, 20141031, 20141103, 20141104, 20141105, 20141107, 20141110, 20141111, 20141112, 20141113, 20141118, 20141120, 20141121, 20141124, 20141125, 20141126, 20141127, 20141208, 20141209, 20141210, 20141213, 20141219, 20141222, 20141223, 20150105, 20150106, 20150107, 20150112, 20150114, 20150115, 20150121, 20150122, 20150123, 20150127, 20150202, 20150203, 20150204, 20150205, 20150206, 20150209, 20150210, 20150211, 20150212, 20150213, 20150216, 20150217, 20150218, 20150219, 20150224, 20150225, 20150226, 20150227, 20150303, 20150304, 20150305, 20150306, 20150309, 20150310, 20150312, 20150313, 20150316, 20150319, 20150320, 20150323, 20150324, 20150325, 20150326, 20150327, 20150330, 20150331, 20150401, 20150402, 20150403, 20150413, 20150414, 20150415, 20150416, 20150417, 20150418, 20150419, 20150420, 20150421, 20150426, 20150427, 20150428, 20150429, 20150430, 20150501, 20150502, 20150503, 20150504, 20150505, 20150506, 20150507, 20150509, 20150510, 20150511, 20150512, 20150513, 20150518, 20150519, 20150520, 20150521, 20150523, 20150524, 20150525, 20150527, 20150528, 20150529, 20150530, 20150531, 20150601, 20150602, 20150603, 20150605, 20150606, 20150607, 20150608, 20150610, 20150611, 20150612, 20150614, 20150615, 20150616, 20150617, 20150618, 20150619, 20150620, 20150621, 20150622, 20150623, 20150624, 20150625, 20150627, 20150630, 20150704, 20150705, 20150706, 20150707, 20150708, 20150709, 20150710, 20150711, 20150712, 20150713, 20150714, 20150715, 20150716, 20150717, 20150719, 20150721, 20150722, 20150723, 20150724, 20150725, 20150726, 20150727, 20150728, 20150731, 20150801].csv'
Update 2: Here's how I created the list realdates, it's from the original filenames themselves.
import os
# Get the list of all files and directories
path = "C:/Users/Freedom/Desktop/Pronimances/"
dir_list = os.listdir(path)
dates_str = []
for i in range (0,1323):
dates_str.append(dir_list[i][0:8])
realdates = list(map(int, dates_str))
答案1
得分: 0
根据提供的细节,似乎您正试图将realdate
与filepath
匹配,但代码中有嵌套循环,每次为每个输入创建1323个文件,然后每次都会覆盖它,因此最终所有1323个文件将只包含最后读取的文件的详细信息。
更新了您的代码如下:
import glob
import numpy as np
import pandas as pd
filepaths = glob.glob('C:/Users/Freedom/Desktop/Pronimances/*.csv')
for path, real_date in zip(filepaths, realdates):
data = np.loadtxt(path, delimiter = ',', skiprows = 1, dtype = 'int', usecols = (0,1,2,3,4,5,6), unpack = True)
times = data[0]
nums = data[1]
Left = data[2]
Right = data[3]
y = data[4]
area = data[6]
#省略了处理数据和创建新列表的代码
data_dict = {'Time': list2, 'Prominence Number': realpromID, 'Left Edge (Pixels)': Left, 'Right Edge (Pixels)': listd, 'Prominence Area': listb}
df = pd.DataFrame(data_dict)
df.to_csv(f'E:Arman/Prominence_Tracking_Test/{real_date}.csv')
根据提供的信息,这应该可以工作。
英文:
Based on the details, it seems you are trying to match realdate
with filepath
, but the code has nested loops, which create the 1323 files for each input, then overwrite it every time, therefore, in the end, all the 1323 files would've details from the last read file only.
Updated your code to follows:
import glob
import numpy as np
import pandas as pd
filepaths = glob.glob('C:/Users/Freedom/Desktop/Pronimances/*.csv')
for path, real_date in zip(filepaths, realdates):
data = np.loadtxt(path, delimiter = ',', skiprows = 1, dtype = 'int', usecols = (0,1,2,3,4,5,6), unpack = True)
times = data[0]
nums = data[1]
Left = data[2]
Right = data[3]
y = data[4]
area = data[6]
#code that manipulates data and creates new lists has been omitted
data_dict = {'Time': list2, 'Prominence Number': realpromID, 'Left Edge (Pixels)': Left, 'Right Edge (Pixels)': listd, 'Prominence Area': listb}
df = pd.DataFrame(data_dict)
df.to_csv(f'E:Arman/Prominence_Tracking_Test/{real_date}.csv')
This should work, based on the information provided.
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论