从点A到点B经过图上给定点的简单路径数量

huangapple go评论94阅读模式
英文:

Find the number of simple paths from A to B going through a given point on the graph

问题

我正在研究网络中的一个有趣问题。

给定一个可能包含循环的无向图:

我选择两个点,A和B作为路径的起点和终点。我的目标是计算通过图中每个其他节点的简单路径有多少个。

例如,在这个图中:
从点A到点B经过图上给定点的简单路径数量

从0到4有4条简单路径。节点3有4个计数,节点1和2有2个计数。

暴力解决这个问题是不可能的,因为它需要找到所有简单路径,其复杂度是O(n!)的数量级。
我尝试修改Floyd-Warshall算法,但我找不到一个好的递归公式 - 我只能计算所有路径,而不仅仅是简单路径。

有没有在多项式时间内解决这个问题的解决方案?

谢谢!

英文:

I am looking into an interesting issue in networks.

Given an undirected graph which can contain cycles:

I choose two points, A and B as origin and end of my paths. My goal is to calculate how many simple paths go through each of the other nodes in the graph.

For example, in this graph:
从点A到点B经过图上给定点的简单路径数量

there are 4 simple paths from 0 to 4. Node 3 has a count of 4, nodes 1 and 2 have a count of 2.

Brute forcing this is impossible, since it would require finding all simple paths, which is on the order of O(n!).
I tried to make a variation of the Floyd–Warshall algorithm, but I cannot find a good recursive formula - I can only manage to count all paths, not only simple ones.

Is there a solution to this problem in polynomial time?

Thank you!

答案1

得分: 1

据所有人所知,对于这个问题,没有一个多项式时间的算法。在一个图中计算从s到t的简单路径的数量 - 即使只是计算它们的数量,而不是列举它们 - 这是一个#P-complete问题。由于对于一个#P-complete问题的多项式时间算法将证明P = NP,因此目前没有已知的多项式时间算法来解决这个问题。

英文:

To the best anyone knows, no, there isn’t a polynomial-time algorithm for this problem. The problem of counting how many s-t simple paths there are in a graph - not even listing them, just counting them - is #P-complete. Since a polynomial-time algorithm for a #P-complete problem would prove P = NP, there are no known polynomial-time algorithms for this problem.

huangapple
  • 本文由 发表于 2023年7月18日 03:35:39
  • 转载请务必保留本文链接:https://go.coder-hub.com/76707606.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定