将多个JSON文件追加到单个CSV文件

huangapple go评论90阅读模式
英文:

append multiple JSON files to single CSV

问题

在我的Python代码中,我有一个for循环,用于生成扁平化的JSON文件。
我想使用相同的for循环递归地将这些JSON文件追加到一个文件(例如.csv文件)中。

我的最终.csv文件应该如下所示:

{"name": "John", "age": 30, "married": true, "divorced": false, "children": ["Ann", "Billy"], "pets": null, "cars": [{"model": "BMW 230", "mpg": 27.5}, {"model": "Ford Edge", "mpg": 24.1}]}
{"name": "Doe", "age": 33, "married": true, "divorced": false, "children": ["Peter", "Billy"], "pets": null, "cars": [{"model": "Tesla", "mpg": 27.5}, {"model": "Ford Edge", "mpg": 27.1}]}
{"name": "Kurt", "age": 13, "married": true, "divorced": false, "children": ["Bruce", "Nikola"], "pets": null, "cars": [{"model": "Mercedes", "mpg": 27.5}, {"model": "123", "mpg": 24.1}]}
英文:

In my Python code, I have a for loop that generates flattened JSON files.
I would like to append these JSON files recursively to a file (for example a .csv file) using the same for loop.

my final .csv should look like this:

{"name": "John", "age": 30, "married": true, "divorced": false, "children": ["Ann", "Billy"], "pets": null, "cars": [{"model": "BMW 230", "mpg": 27.5}, {"model": "Ford Edge", "mpg": 24.1}]}
{"name": "Doe", "age": 33, "married": true, "divorced": false, "children": ["Peter", "Billy"], "pets": null, "cars": [{"model": "Tesla", "mpg": 27.5}, {"model": "Ford Edge", "mpg": 27.1}]}
{"name": "Kurt", "age": 13, "married": true, "divorced": false, "children": ["Bruce", "Nikola"], "pets": null, "cars": [{"model": "Mercedes", "mpg": 27.5}, {"model": "123", "mpg": 24.1}]}

答案1

得分: 1

解决方法是将所有数据添加到字典或其他数据结构中,如列表。

然后使用csv库来编写正确的CSV文件。

https://docs.python.org/3/library/csv.html

这将看起来像这样。

我会使用;,考虑到你有一个用,分隔的名字列表。

但为什么不将所有内容都写入JSON文件而不是CSV呢?

CSV文件将如下所示。


name;age;married;divorced;children;pets;cars
John;30;true;false;Ann,Billy;;model,BMW 230,mpg,27.5,model,Ford Edge,mpg,24.1

....

最好将所有内容存储在JSON中,这样您可以保留数据架构。

无论如何,您需要将数据存储在字典或列表中,然后使用json库将其写入JSON文件

https://docs.python.org/3/library/json.html

JSON文件将如您所说的那样。

{"name": "John", "age": 30, "married": true, "divorced": false, "children": ["Ann", "Billy"], "pets": null, "cars": [{"model": "BMW 230", "mpg": 27.5}, {"model": "Ford Edge", "mpg": 24.1}]}
{"name": "Doe", "age": 33, "married": true, "divorced": false, "children": ["Peter", "Billy"], "pets": null, "cars": [{"model": "Tesla", "mpg": 27.5}, {"model": "Ford Edge", "mpg": 27.1}]}
{"name": "Kurt", "age": 13, "married": true, "divorced": false, "children": ["Bruce", "Nikola"], "pets": null, "cars": [{"model": "Mercedes", "mpg": 27.5}, {"model": "123", "mpg": 24.1}]}
英文:

The solution is to add all your data into a dictionary or other data structure like a list.

After that use the csv library to write a proper CSV file.

https://docs.python.org/3/library/csv.html

Tha will look like this.

I would use ; considering you have a list of names separated by ,.

But why not write it all in a JSON file instead of a CSV.

A CSV will look like this.


name;age;married;divorced;children;pets;cars
John;30;true;false;Ann,Billy;;model,BMW 230,mpg,27.5,model,Ford Edge,mpg,24.1

....

It is preferred to store it all in a JSON, so you can keep the data schema.

Anyways you need to store your data in a dict or a list and then write it to a JSON file with json library

https://docs.python.org/3/library/json.html

The json file will look like you said.

{"name": "John", "age": 30, "married": true, "divorced": false, "children": ["Ann", "Billy"], "pets": null, "cars": [{"model": "BMW 230", "mpg": 27.5}, {"model": "Ford Edge", "mpg": 24.1}]}
{"name": "Doe", "age": 33, "married": true, "divorced": false, "children": ["Peter", "Billy"], "pets": null, "cars": [{"model": "Tesla", "mpg": 27.5}, {"model": "Ford Edge", "mpg": 27.1}]}
{"name": "Kurt", "age": 13, "married": true, "divorced": false, "children": ["Bruce", "Nikola"], "pets": null, "cars": [{"model": "Mercedes", "mpg": 27.5}, {"model": "123", "mpg": 24.1}]}

答案2

得分: 0

你可以安装并导入pandas,然后使用'.to_csv()'。

例如:

import pandas as pd
df = pd.read_json (r'JSON文件路径\文件名.json')
df.to_csv (r'新CSV文件存储路径\新文件名.csv', index = None)

你可以在这里找到文档 -> pandas.pydata.org

英文:

You can install and import pandas, then use a '.to_csv()'.

For ex.:

import pandas as pd
df = pd.read_json (r'Path where the JSON file is saved\File Name.json')
df.to_csv (r'Path where the new CSV file will be stored\New File Name.csv', index = None)

You can find the documentation here -> pandas.pydata.org

答案3

得分: 0

我找到了一个方法来做这件事。我已经在测试,但我做错了一些事情:

csv_filename = csv_tst.csv

with open(input_folder_json_files, 'r') as json_one_line_read:
    json_one_line_file = json.load(json_one_line_read)		

with open(output_folder + csv_filename, 'a+', newline='') as csv_file:
    writer = csv.writer(csv_file)
    writer.writerow([json_one_line_file])

这部分代码位于创建扁平化JSON文件的FOR循环内。也许有更优雅的方法来实现它,但它有效。

英文:

I found a way to do it. I was already testing but I was doing something wrong:

csv_filename = csv_tst.csv

with open(input_folder_json_files, 'r') as json_one_line_read:
     json_one_line_file = json.load(json_one_line_read)		
		
with open(output_folder + csv_filename, 'a+', newline='') as csv_file:
     writer = csv.writer(csv_file)
     writer.writerow([json_one_line_file])

This part of the code is within the FOR-loop that creates flattened JSON files. Perhaps there are more elegant ways to do it, but it works.

huangapple
  • 本文由 发表于 2023年7月17日 22:42:13
  • 转载请务必保留本文链接:https://go.coder-hub.com/76705584.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定