在图表之外但在图形内部写入文本。

huangapple go评论65阅读模式
英文:

Write text outside plot but inside figure

问题

我想在每行的左边添加一段文本,但我一直无法做到。
我尝试使用

plt.annotate('距离 $\leq6.5$ $km$', (1, 1))
plt.text(1, 1, '距离 $\leq6.5$ $km$')

但它总是在最后一个子图中写入,如截图所示。

这是我的当前程序:

import numpy as np
import numpy.random as rd
import matplotlib.pyplot as plt

Dic_Values = {'inf_6.5':{'v_moy':rd.randint(15,25, 20), 'cad':rd.randint(75,100,20), 'f_moy':rd.randint(130,180,20)},
              '6.5_9.5':{'v_moy':rd.randint(15,25, 11), 'cad':rd.randint(75,100,11), 'f_moy':rd.randint(130,180,11)},
              'sup_9.5':{'v_moy':rd.randint(15,25, 4), 'cad':rd.randint(75,100,4), 'f_moy':rd.randint(130,180,4)}}

def bilan_course():
    types = list(Dic_Values.keys())
    c = 0
    plt.figure(figsize=(21,7))
    Labels = ['S_moy', 'Cad', 'F_moy']
    Y_axis = ['S(以 $km \cdot h^{-1}$ 为单位)', 'Cad(以 $步数\cdot 分^{-1}$ 为单位)', 'F(以 $每分钟心跳数\cdot 分^{-1}$ 为单位)']
    for ty in types:
        Donnees = Dic_Values[ty]
        Cles = list(Donnees.keys())
        for v in range(len(Cles)):
            plt.subplot(int('33'+str(3*c+v+1)))
            plt.plot(Donnees[Cles[v]], label=Labels[v])
            plt.xlabel('比赛')
            plt.ylabel(Y_axis[v])
            plt.title(Labels[v])
            plt.ylim(0, max(Donnees[Cles[v]])*1.1)
            plt.legend(loc='best')
        c+=1

    plt.subplots_adjust(left=0.1, bottom=0.085, right=0.95, top=0.882, wspace=0.25, hspace=0.5)
    plt.annotate('距离 $\leq6.5$ $km$', (1, 1), fontsize=12)
    plt.suptitle('总结', fontweight='bold')
    plt.show()
英文:

I would like to add a text at the left of each line but I've not been able to do so.
I tried using

plt.annotate('Distance $\leq6.5$ $km$', (1, 1))
plt.text(1, 1, 'Distance $\leq6.5$ $km$')

but it always resulted into writing in the last subplot as shown on the screenshot.
在图表之外但在图形内部写入文本。

Here is my current program:

import numpy as np
import numpy.random as rd
import matplotlib.pyplot as plt

Dic_Values = {'inf_6.5':{'v_moy':rd.randint(15,25, 20), 'cad':rd.randint(75,100,20), 'f_moy':rd.randint(130,180,20)},
              '6.5_9.5':{'v_moy':rd.randint(15,25, 11), 'cad':rd.randint(75,100,11), 'f_moy':rd.randint(130,180,11)},
              'sup_9.5':{'v_moy':rd.randint(15,25, 4), 'cad':rd.randint(75,100,4), 'f_moy':rd.randint(130,180,4)}}


def bilan_course():
    types = list(Dic_Values.keys())
    c = 0
    plt.figure(figsize=(21,7))
    Labels = ['S_moy', 'Cad', 'F_moy']
    Y_axis = ['S (in $km \cdot h^{-1}$)', 'Cad (in $step\cdot min^{-1}$)', 'F (in $beat\cdot min^{-1}$)']
    for ty in types:
        Donnees = Dic_Values[ty]
        Cles = list(Donnees.keys())
        for v in range(len(Cles)):
            plt.subplot(int('33'+str(3*c+v+1)))
            plt.plot(Donnees[Cles[v]], label=Labels[v])
            plt.xlabel('Course')
            plt.ylabel(Y_axis[v])
            plt.title(Labels[v])
            plt.ylim(0, max(Donnees[Cles[v]])*1.1)
            plt.legend(loc='best')
        c+=1

    plt.subplots_adjust(left=0.1, bottom=0.085, right=0.95, top=0.882, wspace=0.25, hspace=0.5)
    plt.annotate('Distance $\leq6.5$ $km$', (1, 1), fontsize=12)
    plt.suptitle('Summary', fontweight='bold')
    plt.show()

答案1

得分: 1

我猜现在是时候让你熟悉一下 matplotlib 的“显式”API了 在图表之外但在图形内部写入文本。 (查看matplotlib API 文档

简而言之,如果你使用 plt.< 做某事 >,matplotlib 将始终尝试识别最近使用的坐标轴并使用它!要操作显式坐标轴,请调用你实际想要使用的坐标轴对象上的方法!

以下是一个快速的片段,可以帮助你入门:

import matplotlib.pyplot as plt

f, axes = plt.subplots(3, 3, figsize=(10, 6))

for i, ax in enumerate(axes.flat):
    ax.plot([1,2,3])
    ax.set_title(f"this is ax {i}")
    ax.set_xlabel(f"x-label for ax {i}")
    ax.set_ylabel(f"y-label for ax {i}")
    
    ax.text(.25, .1, f"text on ax {i}", ha="left", va="bottom",
            transform=ax.transAxes, color="r")
    
f.tight_layout()

在图表之外但在图形内部写入文本。

英文:

I guess it's time to make yourself familiar with the "expicit" API of matplotlib 在图表之外但在图形内部写入文本。
(see matpltolib docs on APIs)

In short, if you use plt.&lt; do something &gt; matpltolib will always try to identify the most recently used axes and use it!
To address an explicit axes, call the method on the axes object you actually want to use!

Here's a quick snippet that should help you to get started:

import matplotlib.pyplot as plt

f, axes = plt.subplots(3, 3, figsize=(10, 6))

for i, ax in enumerate(axes.flat):
    ax.plot([1,2,3])
    ax.set_title(f&quot;this is ax {i}&quot;)
    ax.set_xlabel(f&quot;x-label for ax {i}&quot;)
    ax.set_ylabel(f&quot;y-label for ax {i}&quot;)
    
    ax.text(.25, .1, f&quot;text on ax {i}&quot;, ha=&quot;left&quot;, va=&quot;bottom&quot;,
            transform=ax.transAxes, color=&quot;r&quot;)
    
f.tight_layout()

在图表之外但在图形内部写入文本。

huangapple
  • 本文由 发表于 2023年7月13日 21:03:20
  • 转载请务必保留本文链接:https://go.coder-hub.com/76679684.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定