使用另一个ndarray中定义的索引切片ndarray。

huangapple go评论64阅读模式
英文:

Slice ndarray with indexes defined in another ndarray

问题

有没有一种方法可以使用来自idx的第i行作为a的第i行的索引,即a[i,idx[i]]

可以通过循环轻松完成这个操作:

np.vstack([a[i, idx[i]] for i in range(len(a))])

但我认为肯定有一种使用NumPy的方法来实现这个目标。

最终结果应该是:

[[1, 3],
 [5, 6]]

使用a[idx]不起作用。如果我使用a[:,idx],那么我会得到太多的结果,即:

array([[[1, 3],
        [2, 3]],
       [[4, 6],
        [5, 6]]])

这接近但不正确。

英文:

Say I have the following:

a = np.array([[1,2,3],[4,5,6]])
idx = np.array([[0,2],[1,2]])

Is there a way to "numpy-slice" the array such that I use the i-th row from idx as index for the i-th row from a i.e a[i,idx[i]]?

This can easily be done by a loop:

np.vstack([a[i, idx[i]] for i in range(len(a))])

But I thought there must be a numpy way of doing it.

The end-result should be:

[[1,3],
 [5,6]]

Doing a[idx] does not work. If I do a[:,idx] then I get too many results i.e that gives

array([[[1, 3],
        [2, 3]],
       [[4, 6],
        [5, 6]]])

which is close, but not correct.

答案1

得分: 2

使用 np.take_along_axis1 轴上选择所需的索引:

>>> np.take_along_axis(a, idx, 1)
array([[1, 3],
       [5, 6]])
英文:

Use np.take_along_axis to select the required indices along the 1 axis:

>>> np.take_along_axis(a, idx, 1)
array([[1, 3],
       [5, 6]])

答案2

得分: 0

你可以使用NumPy的高级索引来获得你想要的结果。

import numpy as np

a = np.array([[1,2,3],[4,5,6]])
idx = np.array([[0,2],[1,2]])
res = a[np.arange(a.shape[0])[:,None], idx]
print(res)

输出:

[[1 3]
 [5 6]]
英文:

You can use NumPy's advanced indexing to get your desired result.

import numpy as np

a = np.array([[1,2,3],[4,5,6]])
idx = np.array([[0,2],[1,2]])
res = a[np.arange(a.shape[0])[:,None], idx]
print(res)

Output:

[[1 3]
 [5 6]]

huangapple
  • 本文由 发表于 2023年7月12日 22:40:58
  • 转载请务必保留本文链接:https://go.coder-hub.com/76671775.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定