如何找到算法的T(n)。

huangapple go评论97阅读模式
英文:

How to find T(n) of an algorithm

问题

k = 1                # 1 
while (k <= n):      # n + 1        
    j = 1            # n
    while (j <= n):    # log_2(n) + 1 ?
        j *= 2       # log_2(n)     ?
    k += 1           # n

这个算法的时间复杂度 T(n) 可以表示为:

T(n) = n + 1 + n + (log₂(n) + 1) + log₂(n) + n

简化后:

T(n) = 3n + 2log₂(n) + 2

所以正确的时间复杂度应该是 T(n) = 3n + 2log₂(n) + 2。

英文:
k = 1                # 1 
while (k &lt;= n):      # n + 1        
    j = 1            # n
    while (j &lt;= n):    # log_2(n) + 1 ?
        j *= 2       # log_2(n)     ?
    k += 1           # n

What would be T(n) of this algorithm? Would it be T(n) = 3n +2log_2 n + 3 ? Or would it be T(n) = 3n + 2n^2 + 3 ? All can find online is how to find O(n)

答案1

得分: 1

你对每个语句的数值都是正确的。所以只需将它们相加并相乘。

内部循环的T是

2 * log_2(n) + 1

添加j的初始化和k的增量以获得外部循环主体的T,如下所示

2 * log_2(n) + 3

外部循环执行了n次,结果是

n * 2 * log_2(n) + 3 * n

然后加1用于k的初始化,以及n + 1用于外部while条件的测试,所以最终的T是

n * 2 * log_2(n) + 3 * n + 2
英文:

Your values for each statement are correct. So just add them up and multiply.

The T of the inner loop is

2 * log_2(n) + 1

Add the initialization of j and increment of k to get the T of the body of the outer loop as

2 * log_2(n) + 3

This is executed n times by the outer loop, resulting in

n * 2 * log_2(n) + 3 * n

Then add 1 for the initialization of k, and n + 1 for the tests of the outer while condition, so the final T is

n * 2 * log_2(n) + 3 * n + 2

huangapple
  • 本文由 发表于 2023年7月11日 09:08:53
  • 转载请务必保留本文链接:https://go.coder-hub.com/76658164.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定