英文:
Does XGBoost Classifier Model pay attention to all X-data entries when making the prediction? Or only same indexed X-data?
问题
以下是已翻译的部分:
"以下是一个虚构的示例,类似于Pandas数据框,用于存储我正在处理的数据并包含XGBoost分类器模型生成的预测值。"
"| X_Data | Target |"
"| -------- | -------- |"
"| 1 | ?? |"
"| 2 | Cell 4 |"
"在调用 XGBClassifier.predict(df['X_data'])
时,预测模型是否同时考虑了X_Data
列中的两个值?还是只考虑了value = 1
,因为目标预测列与value = 1
的索引相同?"
"我希望我的预测模型在X_data
中目标索引周围查看几个值...我已经开始使用 df["X_Data"].shift()
创建其他列,以防模型只查看了相同索引的数据,但不知道模型是否已经查看了这些数据条目。"
英文:
The following made up example is to resemble a Pandas Dataframe, which is storing the data I'm working with and housing my predicted values made by the XGBoost Classifier model
X_Data | Target |
---|---|
1 | ?? |
2 | Cell 4 |
when calling XGBClassifier.predict(df['X_data'])
Does the predictor model look at both values in column X_Data
? or only value = 1
since the target predicted column is same index as value = 1
?
I want my predictor to 'look' at several values around the target's index in X_data
... I began to make other columns with df["X_Data"].shift()
in case the model WAS 'looking' at same indexed data only, but didn't know if the model is looking at these data entries already.
答案1
得分: 1
XGBoost分类模型在进行预测时是否关注所有的X数据条目?
不是的。每一行都会被单独分类。
英文:
>Does XGBoost Classifier Model pay attention to all X-data entries when making the prediction?
No. Each row is classified separately.
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论