在R中如何在匿名函数中使用”across”

huangapple go评论63阅读模式
英文:

How to use across in an anonymous function in R

问题

我在使用此脚本从 df 表中获取统计信息时没有任何问题:

library(dplyr)
library(purrr)

set.seed(123)

df <- tibble(
  a = runif(5),
  b = runif(5)
)

funs <- list(min, median, mean, max, sd)

sum_df1 <- map_dfr(funs,
  ~ summarize(df, across(where(is.numeric), .x, na.rm = TRUE)),
  .id = "statistic"
)

sum_df1

但是我使用的 across 方法已被弃用。所以我尝试了以下方法,但没有成功:

# 由于弃用
sum_df2 <- map_dfr(funs,
  ~ summarize(df, across(where(is.numeric), \(x) na.rm = TRUE)),
  .id = "statistic"
)

# 错误:只有布尔值
sum_df2
英文:

I had no problems in getting statistics from df tibble using this script:

library(dplyr)
library(purrr)

set.seed(123)

df &lt;- tibble(
  a = runif(5),
  b = runif(5)
)

funs &lt;- lst(min, median, mean, max, sd)

sum_df1 &lt;- map_dfr(funs,
  ~ summarize(df, across(where(is.numeric), .x, na.rm = TRUE)),
  .id = &quot;statistic&quot;
)

sum_df1

But the way I used across is deprecated. So I tried the following without success:

# Due to deprecation
sum_df2 &lt;- map_dfr(funs,
  ~ summarize(df, across(where(is.numeric), \(x) na.rm = TRUE)),
  .id = &quot;statistic&quot;
)

# Error: only Booleans
sum_df2

答案1

得分: 2

这里 "col" 指的是列,".x" 指的是函数:

sum_df2 <- map_dfr(funs,
  ~ summarize(df, across(where(is.numeric), \(col) .x(col, na.rm = TRUE))),
  .id = "statistic"
)

identical(sum_df2, sum_df1)
## [1] TRUE

或者我们可以反过来,其中 "f" 是函数,".x" 是列:

sum_df3 <- map_dfr(funs,
  \(f) summarize(df, across(where(is.numeric), ~ f(.x, na.rm = TRUE))),
  .id = "statistic"
)

identical(sum_df3, sum_df1)
## [1] TRUE

或者我们可以完全避免使用 "~",使用这种方式,其中 "f" 是函数,"col" 是列:

sum_df4 <- map_dfr(funs,
  \(f) summarize(df, across(where(is.numeric), \(col) f(col, na.rm = TRUE))),
  .id = "statistic"
)

identical(sum_df4, sum_df1)
## [1] TRUE

顺便提一下,?map_dfr 表示它已经被取代。这意味着它没有被弃用,所以继续使用它是可以的,但是更推荐使用 bind_rows(map(...))。如果我们这样做,那么我们会像这样重新做 sum_df2(对于 sum_df3sum_df4 也类似):

sum_df5 <- map(funs,
     ~ summarize(df, across(where(is.numeric), \(col) .x(col, na.rm = TRUE)))) |>
   bind_rows(.id = "statistic")

identical(sum_df5, sum_df1)
## [1] TRUE
英文:

Here col refers to the column and .x refers to the function:

sum_df2 &lt;- map_dfr(funs,
  ~ summarize(df, across(where(is.numeric), \(col) .x(col, na.rm = TRUE))),
  .id = &quot;statistic&quot;
)

identical(sum_df2, sum_df1)
## [1] TRUE

or we can do it the other way around where f is the function and .x is the column.

sum_df3 &lt;- map_dfr(funs,
  \(f) summarize(df, across(where(is.numeric), ~ f(.x, na.rm = TRUE))),
  .id = &quot;statistic&quot;
)

identical(sum_df3, sum_df1)
## [1] TRUE

or we could avoid using ~ entirely and use this where f is the function and col is the column

sum_df4 &lt;- map_dfr(funs,
  \(f) summarize(df, across(where(is.numeric), \(col) f(col, na.rm = TRUE))),
  .id = &quot;statistic&quot;
)

identical(sum_df4, sum_df1)
## [1] TRUE

As an aside ?map_dfr indicates that it has been superseded. That means it is not deprecated so it is ok to continue to use it but bind_rows(map(...)) is preferred. If we were to do that then we would redo sum_df2 like this (and analogously for sum_df3 and sum_df4):

sum_df5 &lt;- map(funs,
     ~ summarize(df, across(where(is.numeric), \(col) .x(col, na.rm = TRUE)))) |&gt;
   bind_rows(.id = &quot;statistic&quot;)

identical(sum_df5, sum_df1)
## [1] TRUE

答案2

得分: 1

你可以使用 purrr::partial 来添加/填充额外的参数,例如 na.rm = TRUE,例如:

sum_df1 <- map_dfr(funs,
                   ~ summarize(df, across(where(is.numeric), partial(.x, na.rm = TRUE))),
                   .id = "statistic"
)
# 一个 tibble: 5 × 3
  statistic     a      b
  <chr>     <dbl>  <dbl>
1 min       0.288 0.0456
2 median    0.788 0.528 
3 mean      0.662 0.495 
4 max       0.940 0.892 
5 sd        0.294 0.302
英文:

You can use purrr::partial to add/fill additional argument like na.rm = TRUE, e.g.

sum_df1 &lt;- map_dfr(funs,
                   ~ summarize(df, across(where(is.numeric), partial(.x, na.rm = TRUE))),
                   .id = &quot;statistic&quot;
)


    # A tibble: 5 &#215; 3
  statistic     a      b
  &lt;chr&gt;     &lt;dbl&gt;  &lt;dbl&gt;
1 min       0.288 0.0456
2 median    0.788 0.528 
3 mean      0.662 0.495 
4 max       0.940 0.892 
5 sd        0.294 0.302 

huangapple
  • 本文由 发表于 2023年7月10日 19:55:56
  • 转载请务必保留本文链接:https://go.coder-hub.com/76653496.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定