英文:
exploding the struct with no arrays pyspark
问题
我有类似的JSON数据:
{
"labels1":
{"A":1,"B":2, "C":3},
"labels2":
{"A":1,"B":2, "C":3}
}
我想要3个输出列,分别是标签名(tagname)、键名(keyname)、值(value)。最终的输出将如下所示:
tagname,key,value
labels1,A,1
labels1,B,2
labels1,C,3
labels2,A,1
labels2,B,2
labels2,C,3
我该如何实现这个用例?另外,键A、B、C仅为示例,可能还有多个可选字段。提前感谢您的帮助,如果需要更多信息,请告诉我。
英文:
I have json data like
{
"labels1":
{"A":1,"B":2, "C":3},
"labels2":
{"A":1,"B":2, "C":3},
}
and I want 3 output columns that say tagname, keyname,value. The final output will be like
tagname,key,value
labels1,A,1
labels1,B,2
labels1,C,3
labels2,A,1
labels2,B,2
labels2,C,3
How can I achieve this usecase, also the keys A,B,C are just sample and there can be multiple optional fields. Thanks in advance and let me know if any more information is required.
答案1
得分: 0
尝试使用内置的pyspark函数,如stack
,并将结构化数据展开为新列。
示例:
from pyspark.sql.functions import *
json = """{"labels1":{"A":1,"B":2, "C":3},"labels2":{"A":1,"B":2, "C":3}}"""
df = spark.read.json(sc.parallelize([json]), multiLine=True)
df.select(expr("stack(2,'labels1',labels1,'labels2',labels2)")).\
select(col("col0").alias("tagname"),col("col1.*")).\
select("tagname",expr("stack(3,'A',A,'B',B,'C',C) as (key,value)")).show()
#+-------+---+-----+
#|tagname|key|value|
#+-------+---+-----+
#|labels1| A| 1|
#|labels1| B| 2|
#|labels1| C| 3|
#|labels2| A| 1|
#|labels2| B| 2|
#|labels2| C| 3|
#+-------+---+-----+
另一种方法是使用**unpivot
**函数:
df.withColumn("n",lit(1)).\
unpivot("n",["labels1", "labels2"],"new","new1").select(col("new").alias("tagname"),col("new1.*")).\
unpivot("tagname",["A","B","C"],"key","value").\
show()
注意:由于Markdown中的特殊字符,代码示例中的引号可能需要适当处理。
英文:
Try with inbuilt pyspark functions for this case like stack
and unnest the struct to add as new columns.
Example:
from pyspark.sql.functions import *
json = """{"labels1":{"A":1,"B":2, "C":3},"labels2":{"A":1,"B":2, "C":3}}"""
df = spark.read.json(sc.parallelize([json]), multiLine=True)
df.select(expr("stack(2,'labels1',labels1,'labels2',labels2)")).\
select(col("col0").alias("tagname"),col("col1.*")).\
select("tagname",expr("stack(3,'A',A,'B',B,'C',C) as (key,value)")).show()
#+-------+---+-----+
#|tagname|key|value|
#+-------+---+-----+
#|labels1| A| 1|
#|labels1| B| 2|
#|labels1| C| 3|
#|labels2| A| 1|
#|labels2| B| 2|
#|labels2| C| 3|
#+-------+---+-----+
Another way by using unpivot
function:
df.withColumn("n",lit(1)).\
unpivot("n",["labels1", "labels2"],"new","new1").select(col("new").alias("tagname"),col("new1.*")).\
unpivot("tagname",["A","B","C"],"key","value").\
show()
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论