英文:
a question about "ERROR: pip's dependency" for deep learning
问题
ERROR: pip的依赖解析器目前不考虑所有已安装的软件包。这个行为是以下依赖冲突的根源。
googleapis-common-protos 1.59.1需要protobuf!=3.20.0,!=3.20.1,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0.dev0,但您安装了不兼容的protobuf 3.20.0。
tensorflow-metadata 1.13.1需要protobuf<5,>=3.20.3,但您安装了不兼容的protobuf 3.20.0。
tensorboard 2.10.1需要protobuf<3.20,>=3.9.2,但您安装了不兼容的protobuf 3.20.0。
tensorflow 2.10.1需要protobuf<3.20,>=3.9.2,但您安装了不兼容的protobuf 3.20.0。
我仍然可以运行我的深度学习代码。我需要解决上述问题吗?
谢谢
Erick
英文:
all,
After I installed a package with "pip install keras-flops", I had the following message.
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
googleapis-common-protos 1.59.1 requires protobuf!=3.20.0,!=3.20.1,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0.dev0,>=3.19.5, but you have protobuf 3.20.0 which is incompatible.
tensorflow-metadata 1.13.1 requires protobuf<5,>=3.20.3, but you have protobuf 3.20.0 which is incompatible.
tensorboard 2.10.1 requires protobuf<3.20,>=3.9.2, but you have protobuf 3.20.0 which is incompatible.
tensorflow 2.10.1 requires protobuf<3.20,>=3.9.2, but you have protobuf 3.20.0 which is incompatible.
I can still run my deep learning codes. Do I need to fix the above problems?
Thanks
Erick
答案1
得分: 0
Keras-flops 是一个较旧的包,最后发布日期为:2020年8月17日,仅兼容于 tensorflow
和 keras
版本2.2,并需要使用 python 3.6
。因此,在最新的tensorflow版本中安装此包会导致版本不兼容或pip依赖错误。请参考此 keras-flops pypi 链接获取更多详细信息。
您可以尝试使用最新的Tensorflow版本中的Tensorflow模型的 try_count_flops 来计算并返回模型的FLOPs。
英文:
Keras-flops is older package which was last released on : Aug 17, 2020 and only compatible with tensorflow
and keras version 2.2
with python 3.6
. So installing this package in latest tensorflow version is causing the version incompatibility or pip dependency error. Please refer to this keras-flops pypi link for more details.
You can alternatively try using Tensorflow Model's try_count_flops in the latest Tensorflow version which is used to count and return model FLOPs.
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论