Pandas: 如何将两列连接为多行字符串?

huangapple go评论95阅读模式
英文:

Pandas: How can I concatenate 2 columns as a multiline string?

问题

  1. 我有一个pandas数据框想要使用多行字符串来连接它们以下是我的pandas数据框
  2. ```python
  3. pd.DataFrame([[1,"This is the desc of id 1"],[4,"This is the desc of id 2"]], columns=["id","desc"])

我想要的字符串如下,

  1. functionalRequirement 1{{
  2. id: 1
  3. text: This is the desc of id 1
  4. risk: high
  5. verifymethod: test
  6. }}

我尝试了下面的代码,但它没有工作。

  1. df['res'] = f"""
  2. functionalRequirement {df['id']} {{
  3. id: {df['id']}
  4. text: {df['desc']}
  5. risk: high
  6. verifymethod: test
  7. }}
  8. """

我该如何做?

  1. <details>
  2. <summary>英文:</summary>
  3. I have a pandas dataframe and I want to concatenate them using multiline string. Below is my pandas dataframe,
  4. ```{python}
  5. pd.DataFrame([[1,&quot;This is the desc of id 1&quot;],[4,&quot;This is the desc of id 2&quot;]], columns=[&quot;id&quot;,&quot;desc&quot;])

I wanted string like below,

  1. functionalRequirement 1{{
  2. id: 1
  3. text: This is the desc of id 1
  4. risk: high
  5. verifymethod: test
  6. }}

I tried below code but it didnt work.

  1. df[&#39;res&#39;] = f&quot;&quot;&quot;
  2. functionaRequirement {df[&#39;id&#39;]} {{
  3. id: {df[&#39;id&#39;]}
  4. text: {df[&#39;desc&#39;]}
  5. risk: high
  6. verifymethod: test
  7. }}
  8. &quot;&quot;&quot;

How can I do it?

答案1

得分: 2

Sure, here is the translated code portion:

  1. fstring = &quot;&quot;&quot;functionaRequirement {id} {{
  2. id: {id}
  3. text: {desc}
  4. risk: high
  5. verifymethod: test
  6. }}&quot;&quot;&quot;
  7. df[&quot;res&quot;] = df.apply(lambda r: fstring.format(id=r.id, desc=r.desc), axis=1)
  8. &gt;&gt;&gt; print(df.res[0])
  9. functionaRequirement 1 {{
  10. id: 1
  11. text: 这是id 1的描述
  12. risk: high
  13. verifymethod: test
  14. }}

Please note that I have translated the text "This is the desc of id 1" to "这是id 1的描述" in the output.

英文:

Use string formatting and apply it over all rows

  1. fstring = &quot;&quot;&quot;functionaRequirement {id} {{
  2. id: {id}
  3. text: {desc}
  4. risk: high
  5. verifymethod: test
  6. }}&quot;&quot;&quot;
  7. df[&quot;res&quot;] = df.apply(lambda r: fstring.format(id=r.id, desc=r.desc), axis=1)
  8. &gt;&gt;&gt; print(df.res[0])
  9. functionaRequirement 1 {
  10. id: 1
  11. text: This is the desc of id 1
  12. risk: high
  13. verifymethod: test
  14. }

答案2

得分: 1

你可以使用列表推导式:

  1. df['res'] = [f"""
  2. functionaRequirement {id} {{
  3. id: {id}
  4. text: {desc}
  5. risk: high
  6. verifymethod: test
  7. }}
  8. """ for id, desc in zip(df['id'], df['desc'])]

或者如果性能很重要:

  1. ID = df['id'].astype(str)
  2. df['res'] = '\nfunctionaRequirement '+ID+' {\n id: '+ID+'\n text: '+df['desc']+'\n risk: high\n verifymethod: test\n}'

输出:

  1. id desc res
  2. 0 1 This is the desc of id 1 \nfunctionaRequirement 1 {\n id: 1\n text: This is the desc of id 1\n risk: high\n verifymethod: test\n}
  3. 1 4 This is the desc of id 2 \nfunctionaRequirement 4 {\n id: 4\n text: This is the desc of id 2\n risk: high\n verifymethod: test\n}
英文:

You could use a list comprehension:

  1. df[&#39;res&#39;] = [f&quot;&quot;&quot;
  2. functionaRequirement {id} {{
  3. id: {id}
  4. text: {desc}
  5. risk: high
  6. verifymethod: test
  7. }}
  8. &quot;&quot;&quot; for id, desc in zip(df[&#39;id&#39;], df[&#39;desc&#39;])]

Or if performance matters:

  1. ID = df[&#39;id&#39;].astype(str)
  2. df[&#39;res&#39;] = &#39;\nfunctionaRequirement &#39;+ID+&#39; {\n id: &#39;+ID+&#39;\n text: &#39;+df[&#39;desc&#39;]+&#39;\n risk: high\n verifymethod: test\n}&#39;

Output:

  1. id desc res
  2. 0 1 This is the desc of id 1 \nfunctionaRequirement 1 {\n id: 1\n text: This is the desc of id 1\n risk: high\n verifymethod: test\n} \n
  3. 1 4 This is the desc of id 2 \nfunctionaRequirement 4 {\n id: 4\n text: This is the desc of id 2\n risk: high\n verifymethod: test\n} \n

答案3

得分: 0

你可以使用 string 模板与 to_dict 导出你的数据框作为字典:

  1. import string
  2. TEMPLATE = string.Template("""\
  3. functionaRequirement ${id} {{
  4. id: ${id}
  5. text: ${desc}
  6. risk: high
  7. verifymethod: test
  8. }}""")
  9. df['res'] = list(map(TEMPLATE.substitute, df.to_dict('records')))
  10. # 或者
  11. df['res'] = [TEMPLATE.substitute(rec) for rec in df.to_dict('records')]

输出:

  1. >>> df
  2. id desc res
  3. 0 1 This is the desc of id 1 functionaRequirement 1 {{
  4. id: 1
  5. text: This is the desc of id 1
  6. risk: high
  7. verifymethod: test
  8. }}
  9. 1 4 This is the desc of id 2 functionaRequirement 4 {{
  10. id: 4
  11. text: This is the desc of id 2
  12. risk: high
  13. verifymethod: test
  14. }}
  15. >>> print(df.loc[0, 'res'])
  16. functionaRequirement 1 {{
  17. id: 1
  18. text: This is the desc of id 1
  19. risk: high
  20. verifymethod: test
  21. }}
英文:

You can use string template withT to_dict to export your dataframe as dict:

  1. import string
  2. TEMPLATE = string.Template(&quot;&quot;&quot;\
  3. functionaRequirement ${id} {{
  4. id: ${id}
  5. text: ${desc}
  6. risk: high
  7. verifymethod: test
  8. }}&quot;&quot;&quot;)
  9. df[&#39;res&#39;] = list(map(TEMPLATE.substitute, df.to_dict(&#39;records&#39;)))
  10. # OR
  11. df[&#39;res&#39;] = [TEMPLATE.substitute(rec) for rec in df.to_dict(&#39;records&#39;)]

Output:

  1. &gt;&gt;&gt; df
  2. id desc res
  3. 0 1 This is the desc of id 1 functionaRequirement 1 {{\n id: 1\n text...
  4. 1 4 This is the desc of id 2 functionaRequirement 4 {{\n id: 4\n text...
  5. &gt;&gt;&gt; print(df.loc[0, &#39;res&#39;])
  6. functionaRequirement 1 {{
  7. id: 1
  8. text: This is the desc of id 1
  9. risk: high
  10. verifymethod: test
  11. }}

huangapple
  • 本文由 发表于 2023年7月6日 18:14:33
  • 转载请务必保留本文链接:https://go.coder-hub.com/76627765.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定