将具有多列的数据重塑为长格式。

huangapple go评论70阅读模式
英文:

Reshape data with multiple columns to long format

问题

我相当确定,类似这样的问题以前已经被问过,但我找不到任何答案。

这是我的数据集:

data.frame(Group = c("a", "b"), 
           MEAN_A = 1:2, 
           MEAN_B = 3:4, 
           MED_A = 5:6, 
           MED_B = 7:8) 
  Group MEAN_A MEAN_B MED_A MED_B
1     a      1      3     5     7
2     b      2      4     6     8

我想要的是:

data.frame(Group = c("a", "a", "b", "b"), 
           Name = c("MEAN", "MED", "MEAN", "MED"),
           Value_A = c(1, 5, 2, 6),
           Value_B = c(3, 7, 4, 8))
  Group Name Value_A Value_B
1     a MEAN       1       3
2     a  MED       5       7
3     b MEAN       2       4
4     b  MED       6       8

所以我想保留变量Group,并有一个新的列告诉我原始变量是来自MEAN还是MED,以及两列值AB,最初在MEANMED之后的变量名中。

我已经尝试过pivot_longer,甚至使用了模式,但是我无法获得我期望的输出。

英文:

I'm pretty sure, that a question like this was asked before but I cannot find any.

This is my dataset:

data.frame(Group = c("a", "b"), 
           MEAN_A = 1:2, 
           MEAN_B = 3:4, 
           MED_A = 5:6, 
           MED_B = 7:8) 
  Group MEAN_A MEAN_B MED_A MED_B
1     a      1      3     5     7
2     b      2      4     6     8

What I want is the following:

data.frame(Group = c("a", "a", "b", "b"), 
           Name = c("MEAN", "MED", "MEAN", "MED"),
           Value_A = c(1, 5, 2, 6),
           Value_B = c(3, 7, 4, 8))
  Group Name Value_A Value_B
1     a MEAN       1       3
2     a  MED       5       7
3     b MEAN       2       4
4     b  MED       6       8

So I want to keep the variable Group and have a new column which tells me, if the original variable was from MEAN or MED and two columns with the Values of A and B, that where initially in the variable names after MEAN or MED.

I've already tried pivot_longer, even with patterns, but I'm not able to get my desired output.

答案1

得分: 1

以下是翻译好的代码部分:

第一种方法:

选择组和"mean"列,将均值重命名为"Value_",添加"mean"标识符。
选择组和"med"列,将中位数重命名为"Value_",添加"med"标识符。
绑定这些框架,按"Group"排序:

df %>%
  select(1:3) %>%
  rename_with(~gsub(pattern = "MEAN", replacement = "Value", .), .cols = starts_with("MEAN")) %>%
  mutate(Name = "MEAN") %>%
  rbind(df %>%
              select(c(1,4,5)) %>%
              rename_with(~gsub(pattern = "MED", replacement = "Value", .), .cols = starts_with("MED")) %>%
              mutate(Name = "MED")) %>%
  select(Group, Name, Value_A, Value_B) %>%
  arrange(Group)

结果如下:

  Group Name Value_A Value_B
1     a MEAN       1       3
2     a  MED       5       7
3     b MEAN       2       4
4     b  MED       6       8

编辑:另一种整洁的方法:

df %>% 
  pivot_longer(cols = any_of(c(ends_with("_A"), ends_with("_B"))),
               names_to = c("Name", ".value"),
               names_sep = "_") %>%
  rename(Value_A = A, Value_B = B)

结果如下:

# A tibble: 4 × 4
  Group Name  Value_A Value_B
1 a     MEAN        1       3
2 a     MED         5       7
3 b     MEAN        2       4
4 b     MED         6       8

请注意,这是您提供的代码的翻译版本,没有其他附加内容。

英文:

Here's one approach:

Select the group and "mean" columns, rename the means to "Value_", add a "mean" identifier.
Select the group and "med" columns, rename the meds to "Value_", add a "med" identifier.
bind the frames together, sort by "Group":

df %>% select(1:3) %>%
  rename_with(~gsub(pattern = "MEAN", replacement = "Value", .), .cols = starts_with("MEAN")) %>%
  mutate(Name = "MEAN") %>%
  rbind(df %>%
              select(c(1,4,5)) %>% 
              rename_with(~gsub(pattern = "MED", replacement = "Value", .), .cols = starts_with("MED")) %>%
              mutate(Name = "MED")) %>%
  select(Group, Name, Value_A, Value_B) %>%
  arrange(Group)

gives

  Group Name Value_A Value_B
1     a MEAN       1       3
2     a  MED       5       7
3     b MEAN       2       4
4     b  MED       6       8

Edit: another tidy approach:

df %>% 
  pivot_longer(cols = any_of(c(ends_with("_A"), ends_with("_B"))),
               names_to = c("Name", ".value"),
               names_sep = "_") %>%
  rename(Value_A = A, Value_B = B)

# A tibble: 4 × 4
  Group Name  Value_A Value_B
  <chr> <chr>   <int>   <int>
1 a     MEAN        1       3
2 a     MED         5       7
3 b     MEAN        2       4
4 b     MED         6       8

huangapple
  • 本文由 发表于 2023年7月6日 16:31:27
  • 转载请务必保留本文链接:https://go.coder-hub.com/76626940.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定