如何识别大写字符串并移动位置

huangapple go评论69阅读模式
英文:

How to identify UPPER case strings and move place

问题

我已创建了这个pandas数据框:

  1. ds = {"col1": ["ROSSI Mauro", "Luca Giacomini", "Sonny Crockett"]}
  2. df = pd.DataFrame(data=ds)

它看起来像这样:

  1. print(df)
  2. col1
  3. 0 ROSSI Mauro
  4. 1 Luca Giacomini
  5. 2 Sonny Crockett

让我们看一下col1列,其中包含一些名字和姓氏(顺序不同)。
如果一个字符串全是大写字母(例如,像记录0中的ROSSI),那么它是一个姓氏,我需要将它移动到非全大写字母字符串之后。

因此,最终的数据框将如下所示:

  1. col1
  2. 0 Mauro ROSSI
  3. 1 Luca Giacomini
  4. 2 Sonny Crockett

有人知道如何识别col1中的全大写字符串并将其移到非全大写字符串之后吗?

英文:

I have created this pandas dataframe:

  1. ds = {"col1":["ROSSI Mauro", "Luca Giacomini", "Sonny Crockett"]}
  2. df = pd.DataFrame(data=ds)

Which looks like this:

  1. print(df)
  2. col1
  3. 0 ROSSI Mauro
  4. 1 Luca Giacomini
  5. 2 Sonny Crockett

Let's take a look at the column col1, which contains some names and last names (in different order).
If a string is in all UPPER case (for example, like ROSSI in record 0), then it is a last name and I need to move it after the non all-upper case string.

So, the resulting dataframe would look like this:

  1. col1
  2. 0 Mauro ROSSI
  3. 1 Luca Giacomini
  4. 2 Sonny Crockett

Does anyone know how to identify the all-upper case string in col1 and move it after the non all-upper case string?

答案1

得分: 3

你可以使用str.replace与自定义函数:

  1. df['col1'] = df['col1'].str.replace(r'(\S+)\s*(\S+)',
  2. lambda m: f'{m.group(2)} {m.group(1)}'
  3. if m.group(1).isupper() else m.group(0))

或者使用临时的Series和布尔索引str.upper

  1. tmp = df['col1'].str.extract(r'(\S+)\s*(\S+)')
  2. df.loc[tmp[0].str.isupper(), 'col1'] = tmp[1] + ' ' + tmp[0]

注意:这假设名称只有2个不同的单词,如果不是这样,你需要相应地调整正则表达式(正则表达式示例)。

输出:

  1. col1
  2. 0 Mauro ROSSI
  3. 1 Luca Giacomini
  4. 2 Sonny Crockett
英文:

You can use str.replace with a custom function:

  1. df['col1'] = df['col1'].str.replace(r'(\S+)\s*(\S+)',
  2. lambda m: f'{m.group(2)} {m.group(1)}'
  3. if m.group(1).isupper() else m.group(0))

Or temporary Series and boolean indexing with str.upper:

  1. tmp = df['col1'].str.extract(r'(\S+)\s*(\S+)')
  2. df.loc[tmp[0].str.isupper(), 'col1'] = tmp[1] + ' ' + tmp[0]

NB. this assumes that names are only 2 distinct words, if not you need to adapt the regex accordingly (regex demo).

Output:

  1. col1
  2. 0 Mauro ROSSI
  3. 1 Luca Giacomini
  4. 2 Sonny Crockett

答案2

得分: 3

我们还可以在str.replace中使用正则表达式的捕获组:

  1. df['col1 new'] = df['col1'].str.replace('([A-Z]+)\\b(.*)', '\\2 \\1')

输出:

  1. col1 col1 new
  2. 0 ROSSI Mauro Mauro ROSSI
  3. 1 Luca Giacomini Luca Giacomini
  4. 2 Sonny Crockett Sonny Crockett

使用括号()创建捕获组,使用\\b作为单词边界,我们可以使用\\2\\1重新排序这些组。对于更复杂的数据,您可能需要调整您的正则表达式。

英文:

We can also use captured groups with regex in str.replace:

  1. df['col1 new'] = df['col1'].str.replace('([A-Z]+)\\b(.*)', '\ \')

Output:

  1. col1 col1 new
  2. 0 ROSSI Mauro Mauro ROSSI
  3. 1 Luca Giacomini Luca Giacomini
  4. 2 Sonny Crockett Sonny Crockett

Using the () to make a captured group, with \b as a word boundary, we can use \2 and \1 to reorder the groups. With more complex data, you'll probably have to adjust your regex.

huangapple
  • 本文由 发表于 2023年7月3日 21:35:15
  • 转载请务必保留本文链接:https://go.coder-hub.com/76605253.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定