英文:
Big Difference in XIRR vs IRR calculation
问题
背景
我在XIRR和IRR计算中获得了相当大的差异。
问题与请求帮助
请问有人可以解释为什么我会得到两个非常不同的结果,以及哪种方法更准确吗?我提供了一个导致这种巨大差异的现金流示例。
对于这一系列的现金流,标准的IRR函数返回-2.91%,而XIRR函数返回0%。
如果我更改某些现金流的值,我可以使这些值对齐。例如:
- 如果我将2027年12月31日的付款从-50,000更改为1,IRR和XIRR会对齐为-2.75%。
- 或者如果我将2023年12月31日的付款从-300,000更改为-400,000,XIRR和IRR会在-3.18%处对齐。
我不知道是什么导致了这个差异。任何帮助都将不胜感激!
示例数据
日期 现金流
31/12/2023 -300000
31/12/2024 -300000
31/12/2025 -300000
31/12/2026 -300000
31/12/2027 -50000
31/12/2028 15000
31/12/2029 15000
31/12/2030 15000
31/12/2031 15000
31/12/2032 15000
31/12/2033 15000
31/12/2034 15000
31/12/2035 15000
31/12/2036 15000
31/12/2037 15000
31/12/2038 15000
31/12/2039 15000
31/12/2040 15000
31/12/2041 15000
31/12/2042 15000
31/12/2043 15000
31/12/2044 15000
31/12/2045 15000
31/12/2046 15000
31/12/2047 15000
31/12/2048 15000
31/12/2049 15000
31/12/2050 15000
31/12/2051 15000
31/12/2052 15000
31/12/2053 15000
31/12/2054 15000
31/12/2055 15000
31/12/2056 15000
31/12/2057 15000
31/12/2058 15000
31/12/2059 15000
31/12/2060 15000
31/12/2061 15000
31/12/2062 15000
31/12/2063 15000
31/12/2064 15000
31/12/2065 15000
31/12/2066 15000
31/12/2067 15000
英文:
Background
I am getting substantially large variation in XIRR vs IRR calculations.
Problem & Help requested
Can someone please explain why I get two very different outcomes, and which method is more accurate? I've provided an example of cashflows which result in such large variation.
For this series of cashflows, the standard IRR function is returning -2.91% and the XIRR function is returning 0%.
If I change certain cashflows values I can get the values to align. For example
- If I changed the 31/12/2027 payment from -50,000 to 1, the IRR and XIRR align to -2.75%.
- or if I changed 31/12/23 payment from -300,000 to -400,000, XIRR and IRR align at -3.18%
I have no clue what is driving this delta. Any help be appreciated!
Example Data
Date Cashflows
31/12/2023 -300000
31/12/2024 -300000
31/12/2025 -300000
31/12/2026 -300000
31/12/2027 -50000
31/12/2028 15000
31/12/2029 15000
31/12/2030 15000
31/12/2031 15000
31/12/2032 15000
31/12/2033 15000
31/12/2034 15000
31/12/2035 15000
31/12/2036 15000
31/12/2037 15000
31/12/2038 15000
31/12/2039 15000
31/12/2040 15000
31/12/2041 15000
31/12/2042 15000
31/12/2043 15000
31/12/2044 15000
31/12/2045 15000
31/12/2046 15000
31/12/2047 15000
31/12/2048 15000
31/12/2049 15000
31/12/2050 15000
31/12/2051 15000
31/12/2052 15000
31/12/2053 15000
31/12/2054 15000
31/12/2055 15000
31/12/2056 15000
31/12/2057 15000
31/12/2058 15000
31/12/2059 15000
31/12/2060 15000
31/12/2061 15000
31/12/2062 15000
31/12/2063 15000
31/12/2064 15000
31/12/2065 15000
31/12/2066 15000
31/12/2067 15000
答案1
得分: 0
所以我在网上找到了这个链接,上面说我应该为IRR输入一个猜测值
如果你将C3格式设置为科学计数法,你会发现XIRR返回大约2.98E-09,不是真正的零。
尽管你可能认为这已经非常接近零了,但根据我的经验,这个常数代表了XIRR的错误状态。
在这种情况下,我认为它是#NUM错误的一种替代。
因此,XIRR可能需要一个“猜测”来确定IRR。
在做了这个之后,我解决了我的问题。
英文:
So I found this link online which says I should enter in a guess for IRR
> If you format C3 as Scientific, you will see that XIRR returns about
> 2.98E-09, not really zero.
>
> Although you might think that is close enough to zero, in my
> experience, that constant represents an error state in XIRR.
>
> In this case, I believe it is an alternative for the #NUM error.
>
> Thus, XIRR might require a "guess" in order to determine the IRR.
After doing this, I've resolved my problem.
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论