使用gtsummary中的add_difference()函数来展示均值差异,而不是标准化均值

huangapple go评论54阅读模式
英文:

Using add_difference() function in gtsummary to present mean difference instead of standardized mean

问题

在使用add_difference函数创建表格时,如下面的示例所示,将呈现两个药物使用者之间的差异,以及95%的置信区间和p值。这个均值差异是标准化的,对于比例差异(例如二进制变量),实际差异与报告的差异略有不同。例如:两个药物使用者之间的实际肿瘤反应差异为-5%,但其报告的标准化差异为-4.2%。

trial %>%
select(-c("stage")) %>%
  tbl_summary(by = trt,
              statistic = list(
                all_continuous() ~ "{mean} ({sd})",
                all_categorical() ~ "{n} / {N} ({p}%)"
              )) %>%
  add_difference()  

在这个示例中,是否有办法报告二进制变量的实际均值差异而不是标准化均值差异,并仍然获得均值的95%置信区间?(例如,肿瘤反应差异为-5%,而不是-4.2%或患者死亡差异为-6%,而不是-5.8%)

英文:

When creating a table with the add_difference function like the example below, the difference between the two drug users will be presented along with the 95% CI and a p-value. This mean difference is standardized, and for the difference between the proportions (e.g., binary variables) would be slightly different than the actual difference. Example: The actual Tumor response difference between the two drug users is -5%, but its reported standardized difference is -4.2%.

trial %>% 
select(-c("stage")) %>%
  tbl_summary(by = trt,
              statistic = list(
                all_continuous() ~ "{mean} ({sd})",
                all_categorical() ~ "{n} / {N} ({p}%)"
              )) %>%
  add_difference()  

Is there a way to report the actual mean difference instead of the standardized mean difference for the binary variables in this example and still get 95% CI for the mean? (e.g., Tumor-response difference -5% instead of -4.2% Or Patient-died difference to be -6% instead of -5.8%)

答案1

得分: 1

欢迎来到StackOverflow!

你在帖子中提到了二进制变量,所以我已经将表格子集化,只包括这些变量。

我认为你报告的问题只是舍入方式的差异。请参见下文。原始比率和比率差异的舍入都可以修改。

library(gtsummary)
packageVersion("gtsummary")
#> [1] '1.7.1'

trial %>%
  select(trt, response, death) %>%
  tbl_summary(
    by = trt,
    statistic = all_categorical() ~ "{p}%",
    digits = all_categorical() ~ 2,
    missing = "no"
  ) %>%
  add_difference() %>%
  as_kable()
特征 药物A,N = 98 药物B,N = 102 差异 95% CI p-value
肿瘤反应 29.47% 33.67% -4.2% -18%, 9.9% 0.6
病人死亡 53.06% 58.82% -5.8% -21%, 9.0% 0.5

创建于2023年06月29日,使用reprex v2.0.2

英文:

Welcome to StackOverflow!

You mentioned the binary variables in your post, so I've subset the table to include those only.

I think the issue you're reporting is just a difference in rounding. See below. Rounding for both the raw rates and the rate difference can be modified.

library(gtsummary)
packageVersion("gtsummary")
#> [1] '1.7.1'

trial %>% 
  select(trt, response, death) %>%
  tbl_summary(
    by = trt,
    statistic = all_categorical() ~ "{p}%",
    digits = all_categorical() ~ 2,
    missing = "no"
  ) %>%
  add_difference() %>%
  as_kable()
Characteristic Drug A, N = 98 Drug B, N = 102 Difference 95% CI p-value
Tumor Response 29.47% 33.67% -4.2% -18%, 9.9% 0.6
Patient Died 53.06% 58.82% -5.8% -21%, 9.0% 0.5

<sup>Created on 2023-06-29 with reprex v2.0.2</sup>

huangapple
  • 本文由 发表于 2023年6月30日 03:26:50
  • 转载请务必保留本文链接:https://go.coder-hub.com/76584082.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定