如何在成对比较图中显示字母?

huangapple go评论74阅读模式
英文:

How to display letters to pairwise comparison plot?

问题

I can help you with the translation. Here's the translated text without the code:

如何在 ggstatsplot 包的 Kruskal Wallis 检验图上显示字母?这是基于 此问题 的可重现示例。

目前,我的图上显示的是 p 值的柱形图。我想要显示字母,而不是 p 值的柱形图。该问题已经在 这里 得到了回答。显然,AddLetters 函数应该像下面示例中显示的那样,显示字母,但在我的情况下,它无限运行而不显示任何字母。有没有其他显示字母的方法?

示例图,其中显示了字母而不是柱形图 这里
如何在成对比较图中显示字母?

英文:

How can I display letters on a ggstatsplot package plot for Kruskal Walllis test? This is a reproducible example based on this question.

set.seed(123)

# Create vector for number of cases per month
cases_per_month <- c(10, 25, 20, 20, 25, 20, 19, 5)

# Create vector for months (April to November)
months <- c("April", "May", "June", "July", "August", "September", "October", "November")

# Create empty vectors for final dataset
dataset <- data.frame(mean_severity = numeric(), month = character())

# Generate dataset
dat <- list()

for (i in 1:length(months)) {
  month <- rep(months[i], cases_per_month[i])
  severity <- sample.int(n = 10, size = cases_per_month[i], replace = TRUE)
  
  # generate some differences in the sample
  if (i %in% c(1, 4, 7)){
    severity <- severity^2
  }
  
  temp_data <- data.frame(mean_severity = severity, month = month)
  dat[[i]] <- rbind(dataset, temp_data)
}

# Using rbind to combine rows
dat <- do. Call(rbind, dat) 

如何在成对比较图中显示字母?

Currently, I have bars showing p-values. I want letters instead of bars showing p values. The question has been answered here. Apparently, AddLetters function should show letters instead of p values as shown below in his example, but it runs indefinitely without displaying any letters in my case. Is there any other way of displaying letters?

Example plot where letters are shown instead of bars here
如何在成对比较图中显示字母?

答案1

得分: 2

我们需要更改输入以匹配multcompLetters

这是如何做的。

library(Matrix)
library(PMCMRplus)
library(ggstatsplot)

#此代码在您的帖子中制作图表
p <- ggbetweenstats(data = dat, y = mean_severity, x = month, type = "nonparametric")

#此代码执行Dunn配对检验
#kwAllPairsDunnTest(mean_severity ~ month, data=dat, p.adjust.method = "holm")

#现在我们需要将p值矩阵格式化为multcompLetters的对称矩阵
pval.matrix <- kwAllPairsDunnTest(x = dat$mean_severity, 
               g = as.factor(dat$month), p.adjust.method = "holm")

> pval.matrix$p.value
                四月        八月        七月         六月         五月   十一月      十月
八月    0.004092534          NA          NA           NA          NA         NA           NA
七月      1.000000000 0.001097334          NA           NA          NA         NA           NA
六月      0.004907027 1.000000000 0.001911186           NA          NA         NA           NA
五月       0.029411147 1.000000000 0.015500796 1.0000000000          NA         NA           NA
十一月  0.136459815 1.000000000 0.167977744 1.0000000000 1.000000000         NA           NA
十月   1.000000000 0.000118815 1.000000000 0.0002455998 0.002648157 0.07101786           NA
九月 0.009390306 1.000000000 0.004164969 1.0000000000 1.000000000 1.00000000 0.0006461642

我们在操纵配对p值矩阵后使用Matrix包中的forceSymmetric

#使p值矩阵成为方阵并对角化
new.pval.matrix <- rbind(1,pval.matrix$p.value)
new.pval.matrix <- cbind(new.pval.matrix, 1)
diag(new.pval.matrix) <- 1

new.pval.matrix <- as.matrix(forceSymmetric(new.pval.matrix, "L"))

#将九月添加到行和列名称
rownames(new.pval.matrix)[dim(pval.matrix$p.value)+1] <- 
                    rownames(pval.matrix$p.value)[dim(pval.matrix$p.value)[1]]
colnames(new.pval.matrix)[dim(pval.matrix$p.value)+1] <- 
                    rownames(pval.matrix$p.value)[dim(pval.matrix$p.value)[1]]

> new.pval.matrix
                四月        八月        七月         六月         五月   十一月      十月    九月
四月     1.000000000 0.004092534 1.000000000 0.0049070268 0.029411147 0.13645981 1.0000000000 0.0093903064
八月    0.004092534 1.000000000 0.001097334 1.0000000000 1.000000000 1.00000000 0.0001188150 1.0000000000
七月      1.000000000 0.001097334 1.000000000 0.0019111864 0.015500796 0.16797774 1.0000000000 0.0041649687
六月      0.004907027 1.000000000 0.001911186 1.0000000000 1.000000000 1.00000000 0.0002455998 1.0000000000
五月       0.029411147 1.000000000 0.015500796 1.0000000000 1.000000000 1.00000000 0.0026481566 1.0000000000
十一月  0.136459815 1.000000000 0.167977744 1.0000000000 1.000000000 1.00000000 0.0710178590 1.0000000000
十月   1.000000000 0.000118815 1.000000000 0.0002455998 0.002648157 0.07101786 1.0000000000 0.0006461642
九月 0.009390306 1.000000000 0.004164969 1.0000000000 1.000000000 1.00000000 0.0006461642 1.0000000000

现在multcompLetters起作用:

> multcompLetters(new.pval.matrix)
    四月    八月      七月      六月       五月  十一月      十月 九月 
      "a"       "b"       "a"       "b"       "b"      "ab"       "a"       "b"

我们可以按照您提供的链接准备CLD:

data.summary <- group_by(dat, month) %>% 
  summarise(mean=mean(mean_severity), sd=sd(mean_severity)) %>% 
  arrange(desc(mean))
#匹配[factor]月份的顺序
data.summary <- data.summary[order(data.summary$month),]

CLD <- multcompLetters(new.pval.matrix)
data.summary$CLD <- CLD$Letters

#您可能需要更改这些图形选项以适应您的目的
p + geom_text(data = data.summary, aes(label=CLD,x=month, y=mean), 
    position=position_dodge2(0.75), hjust = 3)
英文:

We have to change the input to match multcompLetters.

Here is how to do it.

library(Matrix)
library(PMCMRplus)
library(ggstatsplot)

#this does the plot in your post
p <- ggbetweenstats(data = dat, y = mean_severity, x = month, type = "nonparametric")

#this does the Dunn pairwise tests
#kwAllPairsDunnTest(mean_severity ~ month, data=dat, p.adjust.method = "holm")

#now we have to format the p-value matrix into a symmetric matrix for multcompLetters
pval.matrix <- kwAllPairsDunnTest(x = dat$mean_severity, 
               g = as.factor(dat$month), p.adjust.method = "holm")

> pval.matrix$p.value
                April      August        July         June         May   November      October
August    0.004092534          NA          NA           NA          NA         NA           NA
July      1.000000000 0.001097334          NA           NA          NA         NA           NA
June      0.004907027 1.000000000 0.001911186           NA          NA         NA           NA
May       0.029411147 1.000000000 0.015500796 1.0000000000          NA         NA           NA
November  0.136459815 1.000000000 0.167977744 1.0000000000 1.000000000         NA           NA
October   1.000000000 0.000118815 1.000000000 0.0002455998 0.002648157 0.07101786           NA
September 0.009390306 1.000000000 0.004164969 1.0000000000 1.000000000 1.00000000 0.0006461642

We use forceSymmetric from the Matrix package after manipulating the pairwise p-value matrix:

#square and diagonalize the p-value matrix
new.pval.matrix <- rbind(1,pval.matrix$p.value)
new.pval.matrix <- cbind(new.pval.matrix, 1)
diag(new.pval.matrix) <- 1

new.pval.matrix <- as.matrix(forceSymmetric(new.pval.matrix, "L"))

#Add September to the row and column names
rownames(new.pval.matrix)[dim(pval.matrix$p.value)+1] <- 
                    rownames(pval.matrix$p.value)[dim(pval.matrix$p.value)[1]]
colnames(new.pval.matrix)[dim(pval.matrix$p.value)+1] <- 
                    rownames(pval.matrix$p.value)[dim(pval.matrix$p.value)[1]]

> new.pval.matrix
                April      August        July         June         May   November      October    September
April     1.000000000 0.004092534 1.000000000 0.0049070268 0.029411147 0.13645981 1.0000000000 0.0093903064
August    0.004092534 1.000000000 0.001097334 1.0000000000 1.000000000 1.00000000 0.0001188150 1.0000000000
July      1.000000000 0.001097334 1.000000000 0.0019111864 0.015500796 0.16797774 1.0000000000 0.0041649687
June      0.004907027 1.000000000 0.001911186 1.0000000000 1.000000000 1.00000000 0.0002455998 1.0000000000
May       0.029411147 1.000000000 0.015500796 1.0000000000 1.000000000 1.00000000 0.0026481566 1.0000000000
November  0.136459815 1.000000000 0.167977744 1.0000000000 1.000000000 1.00000000 0.0710178590 1.0000000000
October   1.000000000 0.000118815 1.000000000 0.0002455998 0.002648157 0.07101786 1.0000000000 0.0006461642
September 0.009390306 1.000000000 0.004164969 1.0000000000 1.000000000 1.00000000 0.0006461642 1.0000000000

Now multcompLetters works:

> multcompLetters(new.pval.matrix)
    April    August      July      June       May  November   October September 
      "a"       "b"       "a"       "b"       "b"      "ab"       "a"       "b" 

We can follow your link on how to prepare the CLD:

data.summary <- group_by(dat, month) %>% 
  summarise(mean=mean(mean_severity), sd=sd(mean_severity)) %>% 
  arrange(desc(mean))
#match ordering of the factors [month]
data.summary <- data.summary[order(data.summary$month),]

CLD <- multcompLetters(new.pval.matrix)
data.summary$CLD <- CLD$Letters

#you'll likely need to change these graphics options for your purposes
p + geom_text(data = data.summary, aes(label=CLD,x=month, y=mean), 
    position=position_dodge2(0.75), hjust = 3)

如何在成对比较图中显示字母?

huangapple
  • 本文由 发表于 2023年6月30日 01:22:58
  • 转载请务必保留本文链接:https://go.coder-hub.com/76583314.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定