Polars的read_csv忽略错误,如果无法忽略它们该怎么办?

huangapple go评论221阅读模式
英文:

Polars read_csv ignore_errors what to do if you can't ignore them?

问题

使用 polars.read_csv 处理大型数据集时出现了字段分隔符问题,导致失败。ignore_errors 选项会跳过错误记录,但我不知道是跳过了一个还是成千上万个记录。是否有办法将错误记录导入到错误文件中,或者报告被忽略的行数?

我希望世界足够简单,以支持单字符列分隔符,但这还没有发生 - 为什么 pandas/pyarrow/polars 不支持多字符字段分隔符呢?

英文:

Using polars.read_csv on a large data set results in a failure because of a field delimiter issue. Ignore_errors skips the erroneous records, but I have no idea if one or thousands of records were ignored. Is there a way to pipe the bad records to a bad file or report the number of ignored rows?

I wish the world was simple enough for data to support single character column delimiters, but that hasn't happened yet - why doesn't pandas/pyarrow/polars support multi character field delimiters?

答案1

得分: 1

Polars库在使用ignore_errors参数时不提供将坏记录导向单独文件或报告被忽略行数的机制。您可以通过以下方式手动执行,但我不确定这是否符合您的要求:

import polars as pl

# 定义CSV文件的路径
csv_file = "path/to/your/file.csv"

# 创建一个空的DataFrame以存储坏记录
bad_records = pl.DataFrame()

# 读取CSV文件并手动处理错误
with open(csv_file, "r") as file:
    for line in file:
        try:
            # 将行解析为DataFrame
            df = pl.from_csv_string(line, delimiter=',')
            # 根据需要处理有效的DataFrame
            # ...
        except Exception:
            # 如果发生错误,将该行附加到bad_records DataFrame
            bad_records = bad_records.append(pl.DataFrame(
))
# 将坏记录写入单独的CSV文件 bad_records.to_csv("path/to/bad_records.csv") # 获取被忽略行数 ignored_rows = len(bad_records) # 打印被忽略行数 print(f"被忽略的行数:{ignored_rows}")

关于您的第二个问题,您可以在读取CSV文件时使用pandas.read_csv()函数的"sep"参数来更改字段分隔符。"sep"参数允许您指定CSV文件中使用的分隔符字符或字符串。例如:

df = pd.read_csv(csv_file, sep=';')  # 用您希望的分隔符替换';'
英文:

Polars library doesn't provide a mechanism to pipe the bad records to a separate file or report the number of ignored rows when using the ignore_errors parameter. You could do it manually in the following way but I don't know if it's what you want:

import polars as pl

# Define the path to your CSV file
csv_file = "path/to/your/file.csv"

# Create an empty DataFrame to store the bad records
bad_records = pl.DataFrame()

# Read the CSV file and handle errors manually
with open(csv_file, "r") as file:
    for line in file:
        try:
            # Parse the line as a DataFrame
            df = pl.from_csv_string(line, delimiter=',')
            # Process the valid DataFrame as needed
            # ...
        except Exception:
            # If an error occurs, append the line to the bad_records DataFrame
            bad_records = bad_records.append(pl.DataFrame(
)) # Write the bad records to a separate CSV file bad_records.to_csv("path/to/bad_records.csv") # Get the count of ignored rows ignored_rows = len(bad_records) # Print the number of ignored rows print(f"Number of ignored rows: {ignored_rows}")

Regarding your second question., in Pandas you can change the field delimiters when reading a CSV file by specifying the "sep" parameter in the pandas.read_csv() function. The "sep" parameter allows you to specify the delimiter character or string used in the CSV file.
For example:

df = pd.read_csv(csv_file, sep=';')  # Replace ';' with your desired delimiter

huangapple
  • 本文由 发表于 2023年6月30日 00:53:17
  • 转载请务必保留本文链接:https://go.coder-hub.com/76583118.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定