高效地找到最后一个连续的1序列中的第一个1。

huangapple go评论84阅读模式
英文:

Efficiently find the first of the last 1's sequence

问题

For test1 and test2, the expected output is 36 and 29, respectively.

Here is a sub-optimal solution:

temp1 <- cumsum(test1)
which(temp1==max(temp1[duplicated(temp1)&temp1!=max(temp1)]+1))[1]
[1] 36

temp2 <- cumsum(test2)
which(temp2==max(temp2[duplicated(temp2)&temp2!=max(temp2)]+1))[1]
[1] 29
英文:

I have the following vectors with 0s and 1s:

test1 &lt;- c(rep(0,20),rep(1,5),rep(0,10),rep(1,15)) 

test1
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
                                                                          ^
test2 &lt;- c(rep(0,8),rep(1,4),rep(0,5),rep(1,5),rep(0,6),rep(1,10),rep(0,2)) 

test2
[1] 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0
                                                            ^

I need to find the index of first 1 in the last sequence of 1s (indicated by ^ in the above code). I have a solution (below) that doesn't perform well, how could I improve the performance?

For test1 and test2, the expected output is 36 and 29, respectively.

Here is a sub-optimal solution:

temp1 &lt;- cumsum(test1)
which(temp1==max(temp1[duplicated(temp1)&amp;temp1!=max(temp1)]+1))[1]
[1] 36

temp2 &lt;- cumsum(test2)
which(temp2==max(temp2[duplicated(temp2)&amp;temp2!=max(temp2)]+1))[1]
[1] 29

Note: The length of actual vectors is ~10k.

答案1

得分: 19

data.table库有一个未导出的函数叫做data.table:::uniqlist(list(x))。使用三个冒号:::来访问未导出的函数。该函数确定数据框的列何时更改值,并返回更改的索引。

data.table:::uniqlist(list(test1))
# [1]  1 21 26 36

关于uniqlist,可以参考@Arun在这里的讨论:https://stackoverflow.com/a/21267854/10276092

然后,我使用了y[length(y)]来找到向量中的最后一个项目,并使用基础的ifelse()来检查最后一个索引是否包含1,否则倒数第二个索引必须包含1。

fx <- function(x) {
    y <- data.table:::uniqlist(list(x))
    ifelse(x[y[length(y)]] == 1, y[length(y)], y[length(y) - 1])
}
英文:

The data.table library has a non-exported function called data.table:::uniqlist(list(x)). Use three colons ::: to access non-exported functions. This function determines when columns of a data.frame change value and return indices of the change.

data.table:::uniqlist(list(test1))
# [1]  1 21 26 36

@Arun talks about uniqlist here: https://stackoverflow.com/a/21267854/10276092

Then I use the y[length(y)] method of finding the last item in a vector, and base ifelse() to check if the last index contains a 1, else the second to last index must contain a 1.

fx &lt;- function(x) {
    y &lt;- data.table:::uniqlist(list(x))
    ifelse(x[y[length(y)]] == 1, y[length(y)], y[length(y) - 1])
}

答案2

得分: 18

使用 rle

r <- rle(test1)
ix <- max(which(r$values == 1))
sum(r$lengths[1:(ix - 1)]) + 1
# [1] 36

r <- rle(test2)
ix <- max(which(r$values == 1))
sum(r$lengths[1:(ix - 1)]) + 1
# [1] 29
英文:

Using rle:

r &lt;- rle(test1)
ix &lt;- max(which(r$values == 1))
sum(r$lengths[ 1:(ix - 1) ]) + 1
# [1] 36

r &lt;- rle(test2)
ix &lt;- max(which(r$values == 1))
sum(r$lengths[ 1:(ix - 1) ]) + 1
# [1] 29

答案3

得分: 18

另一种方法是使用 which + diff

idx <- which(test1 == 1)
idx[tail(which(c(0, diff(idx)) != 1), 1)]
#[1] 36
英文:

Another way with which + diff.

idx &lt;- which(test1 == 1)
idx[tail(which(c(0, diff(idx)) != 1), 1)]
#[1] 36

答案4

得分: 16

使用rle运行,然后使用cumsum计算每个运行的结束位置,减去长度并加1以获得起始位置,然后将其减少到仅包含1的运行,最后取最后一个元素。这给出了最后一组1的起始位置,但如果你想要:

  • 结束位置,只需省略-lengths+1
  • 最后一组0的运行,将==1替换为==0
  • 第一组1的运行,将tail替换为head

如果没有1,它将返回一个零长度的数字向量。

with(rle(test1), tail((cumsum(lengths) - lengths + 1)[values == 1], 1))
英文:

Run rle and then use cumsum to calculate the end positions of each run and subtract the lengths and add 1 to get the start positions and then reduce that to the runs of 1's only and finally take the last element. This gives the start position of the last run of 1's but if you wanted:

  • the end position just omit the -lengths+1
  • the last run of 0's replace the ==1 with ==0
  • the first run of 1's replace tail with head

If there are no 1's it returns a zero length numeric vector.

with(rle(test1), tail((cumsum(lengths) - lengths + 1)[values == 1], 1))

答案5

得分: 14

以下是您要翻译的内容:

For completeness, here is the benchmark with a vector of size 30001. Feel free to update this if needed.

x &lt;- c(rep(0,14736),rep(1,413),rep(0,830),rep(1,961),rep(0,274),rep(1,12787))

microbenchmark::microbenchmark(rle_zx8754(x),
                               rle_Grothendieck(x),
                               which_diff_Ma&#235;l(x),
                               uniqlist_Viking(x),
                               while_Ritchie(x),
                               #Position_Ritchie(x),
                               #detect_index_Ritchie(x),
                               diff_Thomas(x),
                               #regex_Thomas(x),
                               #regexpr_Thomas(x),
                               times = 1000, check=&#39;equal&#39;)

Unit: microseconds
                 expr   min     lq      mean median     uq
        rle_zx8754(x) 339.5 350.45  783.9827 357.45 375.15
  rle_Grothendieck(x) 352.7 364.75  616.2324 372.60 391.75
   which_diff_Ma&#235;l(x) 264.2 274.60  404.5521 279.50 292.00
   uniqlist_Viking(x)  16.7  22.30   32.1502  25.40  30.65
     while_Ritchie(x) 777.6 785.60 1021.0738 801.95 847.15
       diff_Thomas(x) 279.4 286.90  500.6373 291.20 306.35
      max neval  cld
 156630.3  1000   cd
  11196.5  1000  bc 
   7263.2  1000  b  
   3524.9  1000 a   
   6739.7  1000    d
   9435.5  1000  b  

functions:

x &lt;- c(rep(0,14736),rep(1,413),rep(0,830),rep(1,961),rep(0,274),rep(1,12787))

rle_zx8754 &lt;- function(x){
  r &lt;- rle(x)
  ix &lt;- max(which(r$values == 1))
  sum(r$lengths[ 1:(ix - 1) ]) + 1
}

which_diff_Ma&#235;l &lt;- function(x){
  idx &lt;- which(x == 1)
  idx[tail(which(diff(idx) != 1), 1) + 1]
}

rle_Grothendieck &lt;- function(x){
  with(rle(x), tail((cumsum(lengths) - lengths + 1)[values == 1], 1))
}

uniqlist_Viking &lt;- function(x){
  y &lt;- data.table:::uniqlist(list(x))
  ifelse(x[y[length(y)]] == 1, y[length(y)], y[length(y) - 1])
}

while_Ritchie &lt;- function(x){
  l &lt;- length(x)
  while (x[l] - x[l - 1] != 1) {
    l &lt;- l - 1
  }
  l
}
Position_Ritchie &lt;- function(x){
  Position(isTRUE, diff(x) == 1, right = TRUE) + 1
}

detect_index_Ritchie &lt;- function(x){
  purrr::detect_index(diff(x) == 1, isTRUE, .dir = &quot;backward&quot;) + 1
}

diff_Thomas &lt;- function(x){
  max((2:length(x))[diff(x) == 1])
}

regex_Thomas &lt;- function(x){
  nchar(sub(&quot;(.*01).*&quot;, &quot;\\1&quot;, paste0(x, collapse = &quot;&quot;)))
}

regexpr_Thomas &lt;- function(x){
  attr(regexpr(&quot;.*(?&lt;=0)1&quot;, paste0(x,collapse = &quot;&quot;), perl = TRUE), &quot;match.length&quot;)
}
英文:

For completeness, here is the benchmark with a vector of size 30001. Feel free to update this if needed.

x &lt;- c(rep(0,14736),rep(1,413),rep(0,830),rep(1,961),rep(0,274),rep(1,12787))
microbenchmark::microbenchmark(rle_zx8754(x),
rle_Grothendieck(x),
which_diff_Ma&#235;l(x),
uniqlist_Viking(x),
while_Ritchie(x),
#Position_Ritchie(x),
#detect_index_Ritchie(x),
diff_Thomas(x),
#regex_Thomas(x),
#regexpr_Thomas(x),
times = 1000, check=&#39;equal&#39;)
Unit: microseconds
expr   min     lq      mean median     uq
rle_zx8754(x) 339.5 350.45  783.9827 357.45 375.15
rle_Grothendieck(x) 352.7 364.75  616.2324 372.60 391.75
which_diff_Ma&#235;l(x) 264.2 274.60  404.5521 279.50 292.00
uniqlist_Viking(x)  16.7  22.30   32.1502  25.40  30.65
while_Ritchie(x) 777.6 785.60 1021.0738 801.95 847.15
diff_Thomas(x) 279.4 286.90  500.6373 291.20 306.35
max neval  cld
156630.3  1000   cd
11196.5  1000  bc 
7263.2  1000  b  
3524.9  1000 a   
6739.7  1000    d
9435.5  1000  b 

functions:

x &lt;- c(rep(0,14736),rep(1,413),rep(0,830),rep(1,961),rep(0,274),rep(1,12787))
rle_zx8754 &lt;- function(x){
r &lt;- rle(x)
ix &lt;- max(which(r$values == 1))
sum(r$lengths[ 1:(ix - 1) ]) + 1
}
which_diff_Ma&#235;l &lt;- function(x){
idx &lt;- which(x == 1)
idx[tail(which(diff(idx) != 1), 1) + 1]
}
rle_Grothendieck &lt;- function(x){
with(rle(x), tail((cumsum(lengths) - lengths + 1)[values == 1], 1))
}
uniqlist_Viking &lt;- function(x){
y &lt;- data.table:::uniqlist(list(x))
ifelse(x[y[length(y)]] == 1, y[length(y)], y[length(y) - 1])
}
while_Ritchie &lt;- function(x){
l &lt;- length(x)
while (x[l] - x[l - 1] != 1) {
l &lt;- l - 1
}
l
}
Position_Ritchie &lt;- function(x){
Position(isTRUE, diff(x) == 1, right = TRUE) + 1
}
detect_index_Ritchie &lt;- function(x){
purrr::detect_index(diff(x) == 1, isTRUE, .dir = &quot;backward&quot;) + 1
}
diff_Thomas &lt;- function(x){
max((2:length(x))[diff(x) == 1])
}
regex_Thomas &lt;- function(x){
nchar(sub(&quot;(.*01).*&quot;, &quot;\\1&quot;, paste0(x, collapse = &quot;&quot;)))
}
regexpr_Thomas &lt;- function(x){
attr(regexpr(&quot;.*(?&lt;=0)1&quot;, paste0(x,collapse = &quot;&quot;), perl = TRUE), &quot;match.length&quot;)
}

答案6

得分: 12

一个简单的while循环将是一个(可能非常)快速的方法,其中所寻找的索引位于向量的末尾。

f <- function(x) {
  l <- length(x)
  while (x[l] - x[l - 1] != 1) {
    l <- l - 1
  }
  l
}

我们也可以使用Position()purrr的等效函数detect_index()

Position(isTRUE, diff(test1) == 1, right = TRUE) + 1

或者

purrr::detect_index(diff(test1) == 1, isTRUE, .dir = "backward") + 1
英文:

A simple while loop will be a (potentially very) fast approach where the sought index is towards the end of the vector.

f &lt;- function(x) {
l &lt;- length(x)
while (x[l] - x[l - 1] != 1) {
l &lt;- l - 1
}
l
}
f(test1)
[1] 36
f(test2)
[1] 29

We could also use Position() or the purrr equivalent detect_index():

Position(isTRUE, diff(test1) == 1, right = TRUE) + 1
[1] 36
purrr::detect_index(diff(test1) == 1, isTRUE, .dir = &quot;backward&quot;) + 1
[1] 36

答案7

得分: 9

  • 'regex' approaches

您可以尝试使用正则表达式,像是sub + nchar:

f1 <- function(v) nchar(sub("(.*01).*", "\\1", paste0(v, collapse = "")))

或者regexpr:

f2 <- function(v) attr(regexpr(".*(?<=0)1", paste0(v, collapse = ""), perl = TRUE), "match.length")
  • 'diff' approaches

或者,您可以尝试其他的diff 方法,比如:

f3 <- function(v) tail(which(diff(v) == 1) + 1, 1)

以及

f4 <- function(v) max((2:length(v))[diff(v) == 1])
英文:

I believe you have many ways to do it, and below are some possible approaches:


  • regex approaches

You can try regex, like sub + nchar

f1 &lt;- function(v) nchar(sub(&quot;(.*01).*&quot;, &quot;\\1&quot;, paste0(v, collapse = &quot;&quot;)))

or regexpr

f2 &lt;- function(v) attr(regexpr(&quot;.*(?&lt;=0)1&quot;, paste0(v,collapse = &quot;&quot;), perl = TRUE), &quot;match.length&quot;)
  • diff approaches

Or, some other diff options, like

f3 &lt;- function(v) tail(which(diff(v) == 1) + 1, 1)

and

f4 &lt;- function(v) max((2:length(v))[diff(v) == 1])

答案8

得分: 9

另一种方法是使用 revmatchrev 反转向量,这样 match 就可以用于查找最后一个1序列。

或者使用 Rcpp 编写一个函数,实现相同的功能,但可以从末尾开始迭代。

或者使用 revdiffmatch

基准测试显示,Rcpp 函数是最快的,分配的内存最少。其性能取决于能够找到匹配的位置。

英文:

Another way using rev and match.
rev reverses the vector, so that match, which returns the first hit, can be used to find the last 1 sequence.

f &lt;- \(x) {
. &lt;- rev(x)
i &lt;- match(1, .)
if(is.na(i)) return(NA)
j &lt;- match(0, tail(., -i))
if(is.na(j)) 1
else length(.) - i - j + 2 }
f(test1)
#[1] 36
f(test2)
#[1] 29
f(c(1,1))
#[1] 1
f(c(0,1))
#[1] 2
f(c(1,0))
#[1] 1
f(c(0,0))
#[1] NA

Or write a function using Rcpp doing the same but can iterate starting from the end.

Rcpp::cppFunction(&quot;int f2(NumericVector x) {
auto i = x.end();
while(i != x.begin() &amp;&amp; *(--i) != 1.) ;
while(i != x.begin() &amp;&amp; *(--i) == 1.) ;
if(*i != 1.) ++i;
return i == x.end() || *i != 1. ? 0 : i - x.begin() + 1;
}&quot;)
f2(test1)
#[1] 36
f2(test2)
#[1] 29
f2(c(1,1))
#[1] 1
f2(c(0,1))
#[1] 2
f2(c(1,0))
#[1] 1
f2(c(0,0))
#[1] 0

Or using rev, diff and match.

f3 &lt;- \(x) {
i &lt;- match(-1, diff(rev(x)))
if(is.finite(i)) length(x) - i + 1
else if(x[1] == 1) 1
else NA
} 
f3(test1)
#[1] 36
f3(test2)
#[1] 29
f3(c(1,1))
#[1] 1
f3(c(0,1))
#[1] 2
f3(c(1,0))
#[1] 1
f3(c(0,0))
#[1] NA

Benchmark

uniqlist &lt;- function(x) {  #M.Viking
y &lt;- data.table:::uniqlist(list(x))
ifelse(x[y[length(y)]] == 1, y[length(y)], y[length(y) - 1]) }
which_diff &lt;- function(x) {  #Ma&#235;l
idx &lt;- which(x == 1)
idx[tail(which(c(0, diff(idx)) != 1), 1)] }
# Dataset from question
x &lt;- rep(c(0,1,0,1,0,1), c(14736,413,830,961,274,12787))
bench::mark(max_iterations = 1e5, f(x), f3(x), which_diff(x),
uniqlist(x),  f2(x) )
#  expression         min   median `itr/sec` mem_alloc `gc/sec` n_itr  n_gc
#  &lt;bch:expr&gt;    &lt;bch:tm&gt; &lt;bch:tm&gt;     &lt;dbl&gt; &lt;bch:byt&gt;    &lt;dbl&gt; &lt;int&gt; &lt;dbl&gt;
#1 f(x)          199.07&#181;s  251.5&#181;s     3412.    1.21MB    76.3   1341    30
#2 f3(x)         218.05&#181;s 319.61&#181;s     3144.    1.76MB   117.    1079    40
#3 which_diff(x) 155.01&#181;s 177.53&#181;s     5518.  954.17KB   103.    2296    43
#4 uniqlist(x)    17.04&#181;s  17.72&#181;s    55386.    1.36MB     4.04 27442     2
#5 f2(x)           5.61&#181;s   6.13&#181;s   161213.    2.49KB     6.16 78462     3
# Data with many changes between 0 and 1 and hit at end
x &lt;- rep(c(0,1), 1e6)
bench::mark(max_iterations = 1e5, f(x), f3(x), which_diff(x),
uniqlist(x),  f2(x) )
#  expression         min   median `itr/sec` mem_alloc `gc/sec`  n_itr  n_gc
#  &lt;bch:expr&gt;    &lt;bch:tm&gt; &lt;bch:tm&gt;     &lt;dbl&gt; &lt;bch:byt&gt;    &lt;dbl&gt;  &lt;int&gt; &lt;dbl&gt;
#1 f(x)           17.97ms  19.86ms      44.6   76.29MB     50.5     23    26
#2 f3(x)          28.77ms  32.78ms      25.6  114.44MB     52.9     14    29
#3 which_diff(x)  14.47ms  16.91ms      52.3   68.67MB     67.8     27    35
#4 uniqlist(x)     2.66ms      3ms     294.     7.63MB     27.8    148    14
#5 f2(x)           1.08&#181;s   1.28&#181;s  701103.     2.49KB     21.0 100000     3
# Data where hit is at beginning
x &lt;- c(0,1,rep(0, 1e6))
bench::mark(max_iterations = 1e5, f(x), f3(x), which_diff(x),
uniqlist(x),  f2(x) )
#  expression         min   median `itr/sec` mem_alloc `gc/sec` n_itr  n_gc
#  &lt;bch:expr&gt;    &lt;bch:tm&gt; &lt;bch:tm&gt;     &lt;dbl&gt; &lt;bch:byt&gt;    &lt;dbl&gt; &lt;int&gt; &lt;dbl&gt;
#1 f(x)            4.34ms    6.6ms     131.    19.11MB     84.6    71    46
#2 f3(x)           15.1ms  18.73ms      35.9   57.24MB     75.7    18    38
#3 which_diff(x)   1.37ms   1.44ms     529.     7.63MB     93.9   265    47
#4 uniqlist(x)   470.91&#181;s 491.54&#181;s    1994.     1.36MB      0     997     0
#5 f2(x)         364.46&#181;s 375.08&#181;s    2649.     2.49KB      0    1325     0
# Data where hit is at end
x &lt;- c(rep(0, 1e6),1,0)
bench::mark(max_iterations = 1e5, f(x), f3(x), which_diff(x),
uniqlist(x),  f2(x) )
#  expression         min   median `itr/sec` mem_alloc `gc/sec`  n_itr  n_gc
#  &lt;bch:expr&gt;    &lt;bch:tm&gt; &lt;bch:tm&gt;     &lt;dbl&gt; &lt;bch:byt&gt;    &lt;dbl&gt;  &lt;int&gt; &lt;dbl&gt;
#1 f(x)           10.53ms  11.33ms      69.8   38.18MB     91.8     35    46
#2 f3(x)          14.19ms  17.18ms      37.6   57.24MB     69.3     19    35
#3 which_diff(x)   1.38ms   1.49ms     512.     7.63MB     77.9    256    39
#4 uniqlist(x)   479.76&#181;s 491.61&#181;s    1997.     1.36MB      0      999     0
#5 f2(x)           1.08&#181;s   1.28&#181;s  683440.     2.49KB     27.3 100000     4

The Rcpp function is the fastest and allocates the lowest amount of memory. Its performance depends where the match could be found.

答案9

得分: 4

也许不是最佳方法,但只是为了易于理解的替代方法

```r
data.frame(var1=c(rep(0,20),rep(1,5),rep(0,10),rep(1,15))) %>%
  mutate(new=rleid(var1), row=row_number()) %>%
  filter(var1==1 & max(new)==new) %>%
  slice_head(n=1) %>%
  select(row)

# 输出

  row
1  36


<details>
<summary>英文:</summary>
May not be the best but just an alternate for easy understanding 
```r
data.frame(var1=c(rep(0,20),rep(1,5),rep(0,10),rep(1,15))) %&gt;% 
mutate(new=rleid(var1), row=row_number()) %&gt;% 
filter(var1==1 &amp; max(new)==new) %&gt;% 
slice_head(n=1) %&gt;% 
select(row)
# output
row
1  36

答案10

得分: 4

我们还可以使用data.table中的rleid函数:

library(data.table)

i1 <- rleid(test1)
min(which(i1 == max(i1[test1 == 1])))
# [1] 36
i1 <- rleid(test2)
min(which(i1 == max(i1[test2 == 1])))
# [1] 29
英文:

We can also use rleid from data.table:

library(data.table)
i1 &lt;- rleid(test1)
min(which(i1 == max(i1[test1 == 1])))
# [1] 36
i1 &lt;- rleid(test2)
min(which(i1 == max(i1[test2 == 1])))
# [1] 29

答案11

得分: 3

Using data.table::rleidv()

rle_seq <- data.table::rleidv(test2)
rle_ones <- rle_seq[test2 != 0]
which_id_last <- rle_ones[length(rle_ones)]
which(rle_seq == which_id_last)[1L]
[1] 30001
英文:

Using data.table::rleidv()

rle_seq &lt;- data.table::rleidv(test2)
rle_ones &lt;- rle_seq[test2 != 0]
which_id_last &lt;- rle_ones[length(rle_ones)]
which(rle_seq == which_id_last)[1L]
[1] 30001

huangapple
  • 本文由 发表于 2023年6月29日 22:46:30
  • 转载请务必保留本文链接:https://go.coder-hub.com/76582182.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定