英文:
How to use a Spark UDF that takes an array of struct as an argument in order to build a new column?
问题
The goal is to create a column named "subscriberPresent" based on the content of the "id" and "profile" columns using the given condition. One way to achieve this without a UDF is to use Spark SQL's built-in functions. You can do this with the when
and otherwise
functions. Here's how you can do it:
import org.apache.spark.sql.functions._
val result = df.withColumn("subscriberPresent", when(col("contractArray.profile") === "SUBSCRIBER" && col("contractArray.id").isNotNull, true).otherwise(false))
This code will add the "subscriberPresent" column to your DataFrame based on the condition you provided.
Please note that the column references in the code (col("contractArray.profile")
and col("contractArray.id")
) assume that you are working with a nested structure where "profile" and "id" are nested within the "contractArray" array. You might need to adjust these column references if your DataFrame structure is different.
英文:
I have the following df
DataFrame:
df.printSchema()
root
|-- code: string (nullable = true)
|-- contractId: string (nullable = true)
|-- contractArray: array (nullable = false)
| |-- element: struct (containsNull = false)
| | |-- profile: string (nullable = true)
| | |-- id: string (nullable = true)
df.show()
+---------------+----------------------------------------+
|code|contractId| contractArray|
+---------------+----------------------------------------+
| A| 45 8| [{CONSUMER, 789}, {SUBSCRIBER, 789}]|
| AC| 7896 0| [{CONSUMER, null}]|
| BB| 12 7| [{CONSUMER, null}, {SUBSCRIBER, null}]|
| CCC| 753 8| [{SUBSCRIBER, null}, {CONSUMER, 7854}]|
+-----------------+--------------------------------------+
The goal is to create a column named subscriberPresent
which would contain a boolean based on the content of the id
and profile
columns. The condition to respect for the contents of the subscriberPresent
column is:
if(col("role") === "SUBSCRIBER" && col("id") != null) true
else false
So, the desired result is the following:
+---------------+----------------------------------------+-----------------+
|code|contractId| contractArray|subscriberPresent|
+---------------+----------------------------------------+-----------------+
| A| 45 8| [{CONSUMER, 789}, {SUBSCRIBER, 789}]| true|
| AC| 7896 0| [{CONSUMER, null}]| false|
| BB| 12 7| [{CONSUMER, null}, {SUBSCRIBER, null}]| false|
| CCC| 753 8| [{SUBSCRIBER, null}, {CONSUMER, 7854}]| false|
+-----------------+--------------------------------------+-----------------+
I was thinking of making a UDF to handle this case but there may be another way to achieve it. Do you have any suggestions ?
答案1
得分: 1
你可以使用Spark中的内置when
和exists
函数来实现所需的结果,而无需使用UDF。
尝试运行这段代码:
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.{col, expr}
// 创建一个SparkSession(如果尚未创建)
val spark = SparkSession.builder().getOrCreate()
// 假设您的DataFrame已经定义为'df'
val resultDF = df.withColumn(
"subscriberPresent",
expr("exists(contractArray, x -> x.profile = 'SUBSCRIBER' and x.id is not null)")
)
resultDF.show()
英文:
You can achieve the desired result without using a UDF by using built-in
when
and exists
functions in Spark.
Try out this code:
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.{col, expr}
// Create a SparkSession (if you haven't already)
val spark = SparkSession.builder().getOrCreate()
// Assuming your DataFrame is already defined as 'df'
val resultDF = df.withColumn(
"subscriberPresent",
expr("exists(contractArray, x -> x.profile = 'SUBSCRIBER' and x.id is not null)")
)
resultDF.show()
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论