英文:
find Minimum sum of squares of set partition in k cluster
问题
你的代码看起来基本正确,但是有一些小错误。这里是翻译好的问题部分:
问题
给定一组n个正整数,将它们分成k个子集,然后最小化每个子集的和的平方的总和。例如,假设集合是[1, 2, 3],k为2,那么解是[1, 2]和[3]。第一个子集的和的平方是(1+2)^2=9,第二个子集的和的平方是3^2=9。总和是9+9=18,这是最小值。
示例输入
n=10,k=2
[63230795, 3521578, 37513838, 37860789, 30498450, 29795141, 41263743, 5815341, 19046274, 20919844] -> 41895269854617569
n=10,k=5
[42566460, 61080136, 12375813, 29881559, 61767889, 60645182, 22105410, 17262225, 34309213, 38950048] -> 29098109328960071
约束条件
- 1≤N≤20
- 1≤K≤10
- 集合中的数字都是正数。您需要使用uint64_t进行算术运算。
我的代码
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <limits.h>
#include <stdint.h>
bool used[20] = {0};
int n, m;
uint64_t arr[20], min = UINT64_MAX;
int find(int nset, uint64_t sum);
int subset(uint64_t subsum, int cur, int sum, int nset){
if (cur == n){
find(nset+1, sum+subsum*subsum);
return 0;
}
subset(subsum, cur+1, sum, nset);
if (!used[cur]){
used[cur] = 1;
subset(subsum+arr[cur], cur+1, sum, nset);
used[cur] = 0;
}
return 0;
}
int find(int nset, uint64_t sum){
if (sum >= min)
return 0;
if (nset == m-1){
uint64_t setsum = 0;
for (int i = 0; i < n; i++)
if (!used[i])
setsum += arr[i];
sum += setsum*setsum;
if (sum < min)
min = sum;
return 0;
}else{
subset(0, 0, sum, nset);
return 0;
}
}
int main(){
scanf("%d %d", &n, &m);
for (int i = 0; i < n; i++)
scanf("%llu", &arr[i]);
uint64_t z = 0;
find(0, z);
printf("%llu", min);
}
你的思路是使用暴力搜索,计算一个子集的和的平方的总和,然后在当前解大于当前答案时进行剪枝。然而,你的代码中有一些小错误。希望这有助于你找到问题并修复它们。
英文:
Problem
Given a set of n positive integers, partition them into k
subsets, then minimize the sum of the squares of the sum of each subset. For example, let the set be [1, 2, 3] and k
be 2, then the solution is [1, 2] and [3]. The square of the sum from the first subset is (1+2)^2=9, and the square of the sum from the second subset is 3^2=9. The sum is 9+9=18, which is the minimum.
sample input
n=10, k=2
[63230795, 3521578, 37513838, 37860789, 30498450, 29795141, 41263743, 5815341, 19046274, 20919844] -> 41895269854617569
n=10, k=5
[42566460, 61080136, 12375813, 29881559, 61767889, 60645182, 22105410, 17262225, 34309213, 38950048]
-> 29098109328960071
constraints
- 1≤N≤20
- 1≤K≤10
- The numbers in the set are all positive. You need to use uint64_t for arithmetics.
my code
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <limits.h>
#include <stdint.h>
bool used[20] = {0};
int n, m;
uint64_t arr[20], min = UINT64_MAX;
int find(int nset, uint64_t sum);
int subset(uint64_t subsum, int cur, int sum, int nset){
if (cur == n){
find(nset+1, sum+subsum*subsum);
return 0;
}
subset(subsum, cur+1, sum, nset);
if (!used[cur]){
used[cur] = 1;
subset(subsum+arr[cur], cur+1, sum, nset);
used[cur] = 0;
}
return 0;
}
int find(int nset, uint64_t sum){
if (sum >= min)
return 0;
if (nset == m-1){
uint64_t setsum = 0;
for (int i = 0; i < n; i++)
if (!used[i])
setsum += arr[i];
sum += setsum*setsum;
if (sum < min)
min = sum;
return 0;
}else{
subset(0, 0, sum, nset);
return 0;
}
}
int main(){
scanf("%d %d", &n, &m);
for (int i = 0; i < n; i++)
scanf("%llu", &arr[i]);
uint64_t z = 0;
find(0, z);
printf("%llu", min);
}
My idea is using brutal search that counting the sum of squares of one subset and next with simple pruning when current solution is larger than current answer, but wrong. Do I lost something? thank you for answering.
答案1
得分: 2
对于暴力破解法,首先你必须找到所有 k 个 n 的分区。10 的所有 2 个分区是 {{9, 1}, {8, 2}, {7, 3}, {6, 4}, {5, 5}}。10 的所有 5 个分区是 {{6, 1, 1, 1, 1}, {5, 2, 1, 1, 1}, {4, 3, 1, 1, 1}, {4, 2, 2, 1, 1}, {3, 3, 2, 1, 1}, {3, 2, 2, 2, 1}, {2, 2, 2, 2, 2}}。这些可以通过简单的递归函数生成。
对于每个分区,生成所有带有这些分区的唯一子集,并对它们进行目标函数的最小化测试。例如对于 {4, 2, 2, 1, 1},从 4 开始生成所有 10!/(4!6!) = 210 个 4 的子集。在每种情况下,剩下的 6 个元素生成所有 6!/(2!2!2!2!) = 45 个 2 的唯一子集对。然后剩下的 2 个分别放在剩余的两个 1 位置上。对于该分区有总共 210*45 = 9450 种排列需要测试。
10 的所有七个 5 分区的总排列数仅为 42525。对于所有五个 2 分区的情况,有 511 种排列。所给示例很容易适用于这种暴力破解方法。虽然我怀疑可能存在一种更经济的解决方案,适用于更大的向量,其中排列数量会呈指数增长。
答案是:
{{3521578, 19046274, 20919844, 37860789, 63230795}, {5815341, 29795141, 30498450, 37513838, 41263743}}
和
{{12375813, 61767889}, {17262225, 61080136}, {22105410, 60645182}, {29881559, 42566460}, {34309213, 38950048}}
英文:
For a brute-force approach, you first have to find all of the k partitions of n. All of the 2 partitions of 10 are {{9, 1}, {8, 2}, {7, 3}, {6, 4}, {5, 5}}. All of the 5 partitions of 10 are {{6, 1, 1, 1, 1}, {5, 2, 1, 1, 1}, {4, 3, 1, 1, 1}, {4, 2, 2, 1,
1}, {3, 3, 2, 1, 1}, {3, 2, 2, 2, 1}, {2, 2, 2, 2, 2}}. Those can be generated with a simple recursive function.
For each partition, generate all unique subsets with those partitions and test them for the minimum of the objective function. E.g. for {4, 2, 2, 1, 1}, start with the 4 and generate all 10!/(4!6!) = 210 subsets of 4. In each case, with the 6 elements that remain generate all 6!/(2!2!2!2!) = 45 unique pairs of subsets of 2. The 2 that remain for each of those go in the remaining two 1 slots. There are then a total of 210*45 = 9450 arrangements to test for that partition.
The total number of arrangements for all seven 5 partitions of 10 is only 42525. For all five 2 partitions of 10, there are 511 arrangements. The examples given are then easily amenable to this brute-force approach. Though I suspect that there is a more economical search for the solution, which would be better suited for larger vectors where the number of arrangements will increase exponentially.
The answers are:
{{3521578, 19046274, 20919844, 37860789, 63230795}, {5815341, 29795141, 30498450, 37513838, 41263743}}
and
{{12375813, 61767889}, {17262225, 61080136}, {22105410, 60645182}, {29881559, 42566460}, {34309213, 38950048}}
答案2
得分: 1
以下是您提供的代码的中文翻译部分:
我尝试自己编写了一个解决方案,结果如下。
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#define FIRST_SET_LEN 10
#define SECOND_SET_LEN 10
uint64_t min_sum_square_subsets(const uint64_t* set, size_t set_len, uint32_t subset_count) {
const size_t subset_len = set_len / subset_count;
uint64_t result = 0;
uint64_t curr_subset_sum = 0;
for (size_t i = 0; i < set_len; i++) {
if (i % subset_len == 0) {
result += curr_subset_sum * curr_subset_sum;
curr_subset_sum = 0;
}
curr_subset_sum += set[i];
}
result += curr_subset_sum * curr_subset_sum;
return result;
}
int main(void) {
const uint32_t first_subset_count = 2;
const uint64_t first_set[FIRST_SET_LEN] = {
63230795, 3521578,
37513838, 37860789,
30498450, 29795141,
41263743, 5815341,
19046274, 20919844
};
const uint64_t first_result = min_sum_square_subsets(first_set, FIRST_SET_LEN, first_subset_count);
printf("第一个子集平方和的最小值:%llu\n", first_result);
printf("第一个期望结果:%llu\n", 41895269854617569);
printf("----------\n");
const uint32_t second_subset_count = 5;
const uint64_t second_set[SECOND_SET_LEN] = {
42566460, 61080136,
12375813, 29881559,
61767889, 60645182,
22105410, 17262225,
34309213, 38950048
};
const uint64_t second_result = min_sum_square_subsets(second_set, SECOND_SET_LEN, second_subset_count);
printf("第二个子集平方和的最小值:%llu\n", second_result);
printf("第二个期望结果:%llu\n", 29098109328960071);
return 0;
}
请注意,这只是代码的翻译部分,没有包括对代码逻辑的解释或分析。
英文:
I have tried writing a solution myself and I came up with this.
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#define FIRST_SET_LEN 10
#define SECOND_SET_LEN 10
uint64_t min_sum_square_subsets(const uint64_t* set, size_t set_len, uint32_t subset_count) {
const size_t subset_len = set_len / subset_count;
uint64_t result = 0;
uint64_t curr_subset_sum = 0;
for (size_t i = 0; i < set_len; i++) {
if (i % subset_len == 0) {
result += curr_subset_sum * curr_subset_sum;
curr_subset_sum = 0;
}
curr_subset_sum += set[i];
}
result += curr_subset_sum * curr_subset_sum;
return result;
}
int main(void) {
const uint32_t first_subset_count = 2;
const uint64_t first_set[FIRST_SET_LEN] = {
63230795, 3521578,
37513838, 37860789,
30498450, 29795141,
41263743, 5815341,
19046274, 20919844
};
const uint64_t first_result = min_sum_square_subsets(first_set, FIRST_SET_LEN, first_subset_count);
printf("First minimum sum of squares of subsets: %llu\n", first_result);
printf("First expected result: %llu\n", 41895269854617569);
printf("----------\n");
const uint32_t second_subset_count = 5;
const uint64_t second_set[SECOND_SET_LEN] = {
42566460, 61080136,
12375813, 29881559,
61767889, 60645182,
22105410, 17262225,
34309213, 38950048
};
const uint64_t second_result = min_sum_square_subsets(second_set, SECOND_SET_LEN, second_subset_count);
printf("Second minimum sum of squares of subsets: %llu\n", second_result);
printf("Second expected result: %llu\n", 29098109328960071);
return 0;
}
The results don't match the expected results. But I hope it can still help you.
答案3
得分: 1
Sol
---
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <limits.h>
#include <stdint.h>
uint64_t befsq[10] = {0}, arr[20], min = UINT64_MAX, avg;
int n, m, len[10] = {0};
int find(int cur) {
uint64_t s = 0;
for (int i = 0; i < m; i++) s += befsq[i]*befsq[i];
if (s >= min) return 0;
if (cur == n) {
min = s;
return 0;
}
for (int i = 0; i < m; i++) {
if (befsq[i] > avg)
continue;
if (befsq[i] + arr[cur] > avg) {
if (befsq[i] + arr[cur] - avg > (avg - befsq[i]))
continue;
}
len[i]++;
befsq[i] += arr[cur];
find(cur + 1);
befsq[i] -= arr[cur];
len[i]--;
if (!len[i]) return 0;
}
}
int main() {
scanf("%d %d", &n, &m);
for (int i = 0; i < n; i++)
scanf("%llu", &arr[i]), avg += arr[i];
avg /= m;
find(0);
printf("%llu", min);
}
Finally, I came up with the solution. The idea is trying to distribute every element to every subset. Similarly, with some "cut" to reduce search tree. The "cut" here, is that the closer the sum of subset to the average the smaller the minimum. Also, the more subset the case has the smaller the minimum. So once found that a subset has no element, the function return directly. These are from my observation, I am not sure if it is true for all similar questions. Hope someone confirms the truth of my idea. Thanks.
英文:
Sol
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <limits.h>
#include <stdint.h>
uint64_t befsq[10] = {0}, arr[20], min = UINT64_MAX, avg;
int n, m, len[10] = {0};
int find(int cur){
uint64_t s = 0;
for (int i = 0; i < m; i++) s += befsq[i]*befsq[i];
if (s >= min) return 0;
if (cur == n){
min = s;
return 0;
}
for (int i = 0; i < m; i++){
if (befsq[i] > avg)
continue;
if (befsq[i]+arr[cur] > avg){
if (befsq[i]+arr[cur]-avg > (avg-befsq[i]))
continue;
}
len[i]++;
befsq[i] += arr[cur];
find(cur+1);
befsq[i] -= arr[cur];
len[i]--;
if (!len[i]) return 0;
}
}
int main(){
scanf("%d %d", &n, &m);
for (int i = 0; i < n; i++)
scanf("%llu", &arr[i]), avg += arr[i];
avg /= m;
find(0);
printf("%llu", min);
}
Finally, I came up with the solution. The idea is trying to distribute every element to every subset. Similarly, with some "cut" to reduce search tree. The "cut" here, is that the closer the sum of subset to the average the smaller the minimum. Also, the more subset the case has the smaller the minimum. So once found that a subset has no element, the function return directly. These are from my observation, i am not sure if it is true for all similar question. Hope someone confirms the truth of my idea. Thanks.
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论