安全的将秒转换为纳秒的方法,避免整数/浮点数溢出?

huangapple go评论78阅读模式
英文:

Safe way of converting seconds to nanoseconds without int/float overflowing?

问题

  • 我目前有一个UNIX时间戳,以64位浮点数表示。它是以浮点数形式的几秒钟。例如1687976937.597064
  • 我需要将其转换为纳秒。但一秒钟有10亿纳秒。直接乘以10亿会导致64位浮点数溢出。

让我们首先考虑一下限制:

  • 1_687_976_937_597_064_000 是上述时间戳乘以10亿的整数结果。目标是找出一种安全达到这个数字的方法。
  • 9_223_372_036_854_775_807 是64位有符号整数中可存储的最大数字。
  • 9_007_199_254_740_992.0 是64位浮点数中可存储的最大数字。在这个范围,没有足够的位来存储任何小数部分(它永远是.0)。编辑:这种说法是不正确的。请参见本文末尾...
  • 因此,64位有符号整数可以保存结果。但64位浮点数不能保存结果,会溢出。

所以我在想:

  • 由于整数可以轻松表示结果,我想我可以先将整数部分转换为整数,然后乘以10亿。
  • 然后提取小数部分,得到一个新的0.XXXXXX浮点数,然后将其乘以10亿。通过以零开头,我确保浮点数的整数部分永远不会溢出。但也许小数部分仍然可能会溢出?希望浮点数会安全地截断尾随的小数,而不是溢出。通过将一个0.X数乘以10亿,结果值永远不应该高于1_999_999_999.XXXXX,所以这个乘法 应该 是安全的...
  • 然后,我将“小数浮点数”截断为整数,以确保结果是一个整数。
  • 最后,我将这两个整数相加。

这似乎是有效的,但这种技巧看起来很瑕疵。这样做安全吗?

这是一个展示该过程的Python repl:

>>> num = 1687976937.597064
>>> whole = int(num)
>>> whole
1687976937
>>> decimals = num - whole
>>> decimals
0.5970640182495117
>>> (whole * 1_000_000_000)
1687976937000000000
>>> (decimals * 1_000_000_000)
597064018.2495117
>>> int(decimals * 1_000_000_000)
597064018
>>> (whole * 1_000_000_000) + int(decimals * 1_000_000_000)
1687976937597064018
>>> type((whole * 1_000_000_000) + int(decimals * 1_000_000_000))
<class 'int'>

所以这里是比较:

  • 1_687_976_937_597_064_018 是上述算法的结果。是的,有一个轻微的、不重要的浮点舍入误差,但我不介意。
  • 1_687_976_937_597_064_000 是Wolfram Alpha计算器给出的科学正确答案。

它确实看起来是成功的,但我的算法有没有任何可能危险并导致错误?

我不够勇敢在没有确认其安全性的情况下投入生产。

关于64位浮点数限制:以下是Python 3 repl的结果(注意993输入和输出中的992):

>>> 9_007_199_254_740_993.0
9007199254740992.0

但也许我错误地理解了那个“限制”...也许这只是一个浮点舍入误差。

英文:
  • I currently have a UNIX timestamp as a 64-bit float. It's seconds with a few fractions as a float. Such as 1687976937.597064.
  • I need to convert it to nanoseconds. But there's 1 billion nanoseconds in 1 second. And doing a straight multiplication by 1 billion <s>would overflow the 64-bit float.</s>

Let's first consider the limits:

  • 1_687_976_937_597_064_000 is the integer result of the above timestamp multiplied by 1 billion. The goal is figuring out a way to safely reach this number.
  • 9_223_372_036_854_775_807 is the maximum number storable in a 64-bit signed integer.
  • 9_007_199_254_740_992.0 is the maximum number storable in a 64-bit float. And at that scale, there aren't enough bits to store any decimals at all (it's permanently .0). Edit: This claim is not correct. See the end of this post...
  • So 64-bit signed integer can hold the result. But a 64-bit float cannot hold the result and would overflow.

So I was thinking:

  • Since an integer is able to easily represent the result, I thought I could first convert the integer portion to an integer, and multiply by 1 billion.
  • And then extract just the decimals so that I get a new 0.XXXXXX float, and then multiply that by 1 billion. By leading with a zero, I ensure that the integer portion of the float will never overflow. But perhaps the decimals could still overflow somehow? Hopefully floats will just safely truncate the trailing decimals instead of overflowing. By multiplying a 0.X number by 1 billion, the resulting value should never be able to be higher than 1_999_999_999.XXXXX so it seems like this multiplication should be safe...
  • After that, I truncate the "decimals float" into an integer to ensure that the result will be an integer.
  • Lastly, I add together the two integers.

It seems to work, but this technique looks so hacky. Is it safe?

Here's a Python repl showing the process:

&gt;&gt;&gt; num = 1687976937.597064
&gt;&gt;&gt; whole = int(num)
&gt;&gt;&gt; whole
1687976937
&gt;&gt;&gt; decimals = num - whole
&gt;&gt;&gt; decimals
0.5970640182495117
&gt;&gt;&gt; (whole * 1_000_000_000)
1687976937000000000
&gt;&gt;&gt; (decimals * 1_000_000_000)
597064018.2495117
&gt;&gt;&gt; int(decimals * 1_000_000_000)
597064018
&gt;&gt;&gt; (whole * 1_000_000_000) + int(decimals * 1_000_000_000)
1687976937597064018
&gt;&gt;&gt; type((whole * 1_000_000_000) + int(decimals * 1_000_000_000))
&lt;class &#39;int&#39;&gt;

So here's the comparison:

  • 1_687_976_937_597_064_018 was the result of the above algorithm. And yes, there's a slight, insignificant float rounding error but I don't mind.
  • 1_687_976_937_597_064_000 is the scientifically correct answer given by Wolfram Alpha's calculator.

It certainly looks like a success, but is there any risk that my algorithm would be dangerous and break?

I am not brave enough to put it into production without confirmation that it's safe.


Concerning the 64-bit float limits: Here are the results in Python 3's repl (pay attention to the 993 input and the 992 in the output):

&gt;&gt;&gt; 9_007_199_254_740_993.0
9007199254740992.0

But perhaps I am reading that "limit" incorrectly... Perhaps this is just a float rounding error.

答案1

得分: 1

在使用64位浮点数时,要注意“可信”数字的数量是15。也许第16位数字也是正确的,但你无法知道。

因此,当你提取(或打印)浮点数的小数部分时,超过第16位的数字都是无用的。

你提到需要使用C POSIX utimensat。它需要一个包含两个成员的timespec结构,用于保存秒数和纳秒数。

第一个成员(秒数)可以使用任何整数类型,可能是“long”。但用于纳秒的类型(“long”)依赖于平台:它可以是32位或64位的有符号整数。
<br>因此,必须关注可用的范围。

你可以在C文档中查看类型的限制。

幸运的是,32位的long可以容纳9位数字(以及开始的0、1或2位)。这足以打印纳秒部分(确切地说是9位数字)。

到目前为止,一切都还好。你可以使用32位整数,不需要64位。

现在的关键是如何将浮点数拆分为两个整数。
<br>一种方法是将数字转化为字符串,并为小数部分添加所需的零。然后取小数点前后的部分,将它们转化为整数,就可以了。

如果不使用字符串,整数部分很容易,只需简单地使用int(number)
<br>对于小数部分,你可以用num-whole来减去整数部分。然后乘以10^9,转化为整数,并在正确的位置截断。这个位置正好在第9位数字之后。

英文:

The thing when working with 64bit floats is that the number of "trusted" digits is 15. Perhaps the 16th digit is also right, but you can't know.

So when you take (or print) the decimal part of a float anything beyond the 16th digit is garbage.

You say you need C POSIX utimensat. It requires an array of timespec structures, which has two members to hold the number of seconds and the number of nanoseconds.

The first member (seconds) allows any integer type, likely "long". But the type used for nanoseconds ("long") is platform-dependant: It can be a 32 or a 64 signed integer.
<br> So, available range must be watched.

You can see the limits of the types in the C docs.

Fortunately a 32 bit long can hold 9 digits (and an extra 0,1,2 at the beginning). This is enough to print the nanoseconds part (exactly 9 digits).

So far, so good. You can use 32bit integers, no 64bit needed.

The key now is how to split the float into two integers.
<br>One way is transforming the number into a string, and add required zeros for the decimal part. Then take the parts before and after the decimal point, translate them into integers and you are done.

Without strings, the whole part is easy. A simple int(number).
<br>For the decimal part you can substract num-whole. Then multiply by 10^9, convert into a integer and truncate at the right position. This position is exactly after the 9th digit.

答案2

得分: 1

关于文件,Unix [时间戳][1] 的准确性取决于[操作系统底层时间戳粒度][2]。这个粒度可以是2秒、1秒、毫秒、微秒和纳秒。如果你将精度高于操作系统粒度(如果有的话)的数字转换成纳秒表示,你将得到一个不正确的纳秒表示。

此外,64位浮点数可以准确表示范围在2^53的整数。潜在地,纳秒值可以是64位,因此并非所有值都可以表示。通常的假设是64位浮点数的十进制表示对于15个小数位是精确的(它可以更多,但15个小数位将包含所有数字组合,无论是否是2的倍数)。

解决这些问题的两种方法。假设毫秒文件时间戳,或1e-3

你可以使用字符串来获得一个四舍五入的值,正如你期望的那样:

def ts2its(ts):
    sec, _, dec = f'{ts:.3f}'.partition('.')
    return int(sec) * 1_000_000_000 + int(dec) * 1_000_000

>>> ts2its(1687976937.597064)
1687976937597000000

另外,对于纯数学方法,你可以使用[math.modf][3] 来删除毫秒后的小数位:

def ts2its2(ts):
    # 在所有区域和平台上都可靠
    sec1, dec = math.modf(ts)
    _, sec = math.modf(sec1 * 1e3)
    return int(dec * 1e9) + int(sec * 1e6)

>>> ts2its2(1687976937.597064)
1687976937597000000

你在你自己的答案中提出了以下解决方案:

>>> ts = 1687976937.597064
>>> int(ts * 1_000_000_000)
1687976937597063936

诚然,99%的情况下这是一个很好的解决方案。但让我们来讨论那不到1%的情况。

让我们首先看一下你的示例时间:

1687976937.597064
SSSSSSSSSS          1秒精度下的有效位数
SSSSSSSSSS SSS      毫秒精度下的有效位数
SSSSSSSSSS SSSSS?   第16位数字的准确性有疑问

S=有效位数

现在看看int(ts * 1_000_000_000)的结果:

1687976937597063936
SSSSSSSSSSSSSS?XXX

S=有效位数
?=有疑问的有效位数
X=可能不准确的位数

所以问题实际上是你问题陈述的反向。

使用64位浮点数:

1. 任何时间戳都可以表示为毫秒精度;
2. 大多数时间戳都可以表示为微秒精度;
3. 在微秒和纳秒时间戳之间,逐位准确性丢失。

64位浮点数时间戳实际上只是一个时间戳的便利数据结构。纳秒时间戳的[实际表示][4]是依赖于操作系统的,但通常是一个复合数据结构,包含两个整数,一个表示秒,另一个表示分数。

[1]: https://en.wikipedia.org/wiki/Unix_time
[2]: https://docs.python.org/3/library/os.html#os.stat_result.st_ctime_ns
[3]: https://docs.python.org/3/library/math.html#math.modf
[4]: https://en.wikipedia.org/wiki/Unix_time#Representing_the_number

<details>
<summary>英文:</summary>

For files, Unix [time stamps][1] are only as accurate as the [OS underlying time stamp granularity][2]. This granularity can be 2 seconds, 1 second, milliseconds, microseconds and nanoseconds. If you convert the digits beyond the granularity of the OS (if any) you will get an incorrect nanosecond representation. 

Further, a 64 bit float can accurately represent integers in the range of 2^53. Potentially, a nanosecond value could be 64 bits so not all values can be represented. The usual assumption is a decimal representation of a 64 bit float is as accurate as an integer for 15 decimal digits (it can be more, but 15 decimal digits will hold all combinations of digits no matter if it a factor of 2.) 

Two ways to get around these issues. Assume milliseconds file stamps, or `1e-3`. 

You can use strings to get a rounded value as you expect it to be:

    def ts2its(ts):
        sec,_,dec=f&#39;{ts:.3f}&#39;.partition(&#39;.&#39;) # use locale to get the decimal...
        return int(sec)*1_000_000_000+int(dec)*1_000_000

    &gt;&gt;&gt; ts2its(1687976937.597064)
    1687976937597000000

Alternatively, for a purely math approach, you can use [math.modf][3] in the following manner to drop the digits after milliseconds:

    def ts2its2(ts):
        # reliable in all locales and platforms
        sec1, dec = math.modf(ts)
        _,sec = math.modf(sec1*1e3)
        return int(dec*1e9)+int(sec*1e6)

    &gt;&gt;&gt; ts2its2(1687976937.597064)
    1687976937597000000

---

You propose this in your own answer as the solution:

    &gt;&gt;&gt; ts=1687976937.597064
    &gt;&gt;&gt; int(ts*1_000_000_000)
    1687976937597063936

Granted, 99% of the time this is a fine solution. But let&#39;s talk about the 1% of the time when it is not.

Let&#39;s start by looking at your example time:

     1687976937.597064
     SSSSSSSSSS          Significant under 1 second granularity
     SSSSSSSSSS SSS      Significant under millisecond granularity
     SSSSSSSSSS SSSSS?   The 16th digit is questionable as accurate

     S=significant under 

Now look at the result of `int(ts*1_000_000_000)`:

     1687976937597063936
     SSSSSSSSSSSSSSS?XXX

     S=significant
     ?=Questionably significant
     X=Likely inaccurate.

So the issue is really the inverse of your problem statement. 

With a 64 bit float:

 1. ANY time stamp can be represented to millisecond accuracy;
 1. MOST time stamps can be represented to microsecond accuracy;
 1. Digit by digit accuracy is lost between microsecond and nanosecond time stamps.

A 64 bit float time stamp is really just a convenience data structure for a time stamp. The [actual representation][4] of nanosecond time stamps are OS dependent but usually is a compound data structure with two ints; one for the seconds and another for the fraction. 


  [1]: https://en.wikipedia.org/wiki/Unix_time
  [2]: https://docs.python.org/3/library/os.html#os.stat_result.st_ctime_ns
  [3]: https://docs.python.org/3/library/math.html#math.modf
  [4]: https://en.wikipedia.org/wiki/Unix_time#Representing_the_number

</details>



# 答案3
**得分**: 0

浮点数可以具有非常大的指数,而不会失去其显著精度。事实证明,浮点数允许进行非常大的乘法运算而没有任何问题,如下所示:

```py
>>> 9_000_000_000_000_000_000_000_000_000.0 * 1_000_000_000
9e+36
>>> 9_123_456_789_012_345_678_901_234_567.0 * 1_000_000_000
9.123456789012346e+36
>>> int(9_123_456_789_012_345_678_901_234_567.0 * 1_000_000_000)
9123456789012346228226434616254267392

所以基本上,浮点数尽量保留尽可能多的“有效数字”,在内部截断其余部分(在上面的示例中是左操作符中的部分),然后只是缩放指数。它能够大致表示远远超过宇宙年龄的Unix纳秒时间戳。

当需要将其转换为整数时,您还可以看到浮点数保留了尽可能多的精度,并且在转换时表现出色。所有有效数字都在那里。在输出数字的末尾有很多“随机浮点舍入误差/噪音”,但这些数字并不重要。

换句话说,我对浮点数可以存储的数字大小有了根本性的误解。它并没有受到限制。它只存储了固定数量的有效数字,然后使用指数达到所需的比例。所以在这里浮点数就足够了!

答案是我可以直接进行乘法运算,这是完全安全的。由于我的乘数是纯粹的10亿,没有任何分数,它只会将指数扩大10亿倍,而不会改变任何数字。太棒了。 安全的将秒转换为纳秒的方法,避免整数/浮点数溢出?

就像这样!

>>> int(1687976937.597064 * 1_000_000_000)
1687976937597063936

尽管在上面使用整数时,Python实际上会将其内部转换为浮点数(1_000_000_000 (int) -> 1e9 (float)),因为另一个操作数是浮点数。

因此,直接使用浮点数进行该乘法运算实际上快6%,因为它避免了对乘数进行int -> float转换:

>>> int(1687976937.597064 * 1e9)
1687976937597063936

正如您所看到的,结果是相同的,因为两种情况都是进行float * float数学运算。整数只是首先需要额外的转换步骤,而后一种方法则避免了这种情况。

让我们回顾一下:

  • 1_687_976_937_597_064_018 是我之前“分割”算法的结果(在我最初的问题中)。
  • 1_687_976_937_597_063_936 是“只信任浮点数并直接进行乘法运算”的建议给出的结果。
  • 1_687_976_937_597_064_000 是Wolfram Alpha计算器给出的数学正确答案。

所以我的“分割”技术具有较小的舍入误差。我方法更准确的原因是因为我将数字“分成”了“整数”(int)和“小数/分数”(float)。这意味着我的方法完全将所有有效数字专注于小数部分,因为我在小数/分数之前移除了“整数部分”。这意味着我的“小数”浮点数能够将所有有效数字正确地表示为小数,具有更高的精度。

但这些是以纳秒表示的UNIX时间戳,实际上没有人真正关心“秒的小数部分”的精度。重要的是分数的前几位重要数字,而这些都是正确的。这才是最重要的。最终,我将使用此结果通过utimensat API设置磁盘上的时间戳,真正重要的是我能够获得大致正确的秒的小数部分。 安全的将秒转换为纳秒的方法,避免整数/浮点数溢出?

我使用Python的os.utime()包装器来调用该API,它将纳秒作为有符号整数:如果指定了ns,它必须是一个形如(atime_ns, mtime_ns)的2元组,其中每个成员都是表示纳秒的int。

我将直接进行乘法运算,然后将结果转换为整数。这只需一步简单的数学运算,可以获得小数部分(秒的分数部分)的足够精度,以令人满意的方式解决了问题!

以下是我将要使用的Python代码。它通过从磁盘获取当前的“访问时间”来保留纳秒,然后将self.unix_mtime浮点数(具有小数部分的UNIX时间戳)转换为64位有符号整数纳秒表示,然后将更改应用于目标文件/目录:

# 对于几乎所有人来说,精度足够高。速度很快。
file_meta = target_path.lstat()
st_mtime_ns = int(self.unix_mtime * 1e9)
os.utime(
    target_path, ns=(file_meta.st_atime_ns, st_mtime_ns), follow_symlinks=False
)

如果其他人

英文:

Floats can have a really large exponent without losing their significant precision. Turns out that floats allow really large multiplication without any issues, as such:

&gt;&gt;&gt; 9_000_000_000_000_000_000_000_000_000.0 * 1_000_000_000
9e+36
&gt;&gt;&gt; 9_123_456_789_012_345_678_901_234_567.0 * 1_000_000_000
9.123456789012346e+36
&gt;&gt;&gt; int(9_123_456_789_012_345_678_901_234_567.0 * 1_000_000_000)
9123456789012346228226434616254267392

So basically, the float is keeping as many "significant digits" as it can fit internally, truncating the rest (in the left hand operator in the examples above), and then just scaling the exponent. It's able to roughly represent Unix nanosecond timestamps that are far larger than the age of the universe.

When it's time to convert it to an integer, you can also see that the float keeps as much precision as it could and does a good job with the conversion. All of the significant digits are there. There's a lot of "random float rounding errors/noise" at the end of the output number, but those digits don't matter.

In other words, I've had a fundamental misunderstanding about the size of numbers that a float can store. It's not limited per se. It just stores a fixed amount of significant digits and then it uses an exponent to reach the desired scale. So a float would suffice here!

The answer is that I can just do the multiplication directly, and it will be totally safe. Since my multiplier is a straight 1 billion without any fractions, it will just scale up the exponent by 1 billion, without changing any of the digits at all. Fantastic. 安全的将秒转换为纳秒的方法,避免整数/浮点数溢出?

Just like this!

&gt;&gt;&gt; int(1687976937.597064 * 1_000_000_000)
1687976937597063936

Although when we use an integer like above, Python actually internally converts it into a float (1_000_000_000 (int) -&gt; 1e9 (float)), since the other operand is a float.

So it's actually 6% faster to do that multiplication with a float directly (avoiding the need for int -&gt; float conversion of the multiplier):

&gt;&gt;&gt; int(1687976937.597064 * 1e9)
1687976937597063936

As you can see, the result is identical, since both cases are doing float * float math. The integer just required an extra conversion step first, which the latter method avoids.

Let's recap:

  • 1_687_976_937_597_064_018 was the result of my "split" algorithm earlier (in my original question).
  • 1_687_976_937_597_063_936 is the result given by the suggestion to "just trust the float and do the multiply directly".
  • 1_687_976_937_597_064_000 is the mathematically correct answer given by Wolfram Alpha's calculator.

So my "split" technique had a smaller rounding error. The reason why my method was more accurate is because I had "split" my number into "whole" (int) and "decimals/fractions" (float). Which means that my method has full devotion of all significant digits to the decimals, since I had removed "the whole number" before the decimals/fractions. This means that my "decimals" float was able to devote all significant digits to properly representing the decimals with much greater precision.

But these are UNIX timestamps represented as nanoseconds, and nobody really cares about the "fractions of a second" precision that much. What matters are the first few, important digits of the fraction, and those are all correct. That's all that matters in the end. I'll be using this result to set timestamps on disk via the utimensat API, and all that really matters is that I get roughly the correct fractions of a second. 安全的将秒转换为纳秒的方法,避免整数/浮点数溢出?

I use the Python os.utime() wrapper for that API, which takes the nanoseconds as a signed integer: "If ns is specified, it must be a 2-tuple of the form (atime_ns, mtime_ns) where each member is an int expressing nanoseconds."

I'm going to do the straight multiplication and then convert the result to an int. That does the math in one simple step, gets sufficient precision for the decimals (fractions of a second), and solves the issue in a satisfactory way!

Here's the Python code I'll be using. It preserves the current "access time" as nanoseconds by fetching that value from disk, and takes the self.unix_mtime float (a UNIX timestamp with fractions of a second as decimals) and converts that to a signed 64-bit integer nanosecond representation, and then applies the change to the target file/directory:

# Good enough precision for practically anybody. Fast.
file_meta = target_path.lstat()
st_mtime_ns = int(self.unix_mtime * 1e9)
os.utime(
    target_path, ns=(file_meta.st_atime_ns, st_mtime_ns), follow_symlinks=False
)

If anyone else wants to do this, beware that I am using lstat() to get the status of symlinks rather than their target, and using follow_symlinks=False to ensure that if the final target_path component is a symlink then I affect the link itself rather than the target. Other people may want to change these calls to stat() and follow_symlinks=True if you prefer affecting the target rather than the symlink itself. But I would guess that most people prefer my method of affecting the symlink itself if the target_path points at a symlink.

If you care about doing this "seconds-float to nanoseconds int" conversion with the highest achievable precision (by devoting maximum float precision to all the decimal digits to minimize rounding errors), then you can do my "split" variant as follows instead (I added type hints for clarity):

# Great conversion precision. Slower.
file_meta = target_path.lstat()
whole: int = int(self.unix_mtime)
frac: float = self.unix_mtime - whole
st_mtime_ns: int = whole * 1_000_000_000 + int(frac * 1e9)
os.utime(
    target_path, ns=(file_meta.st_atime_ns, st_mtime_ns), follow_symlinks=False
)

As you can see, it uses int * int math for the "whole seconds" and uses float * float math for the "fractions of a second". And then combines the result into an integer. This gives the best of both worlds in terms of accuracy and speed.

I did some benchmarks:

  • 50 million iterations on a Ryzen 3900x CPU.
  • The "simplified, less accurate" version took 11.728529000014532 seconds.
  • The more accurate version took 26.941824199981056 seconds. That's 2.3x the time.
  • Considering that I did 50 million iterations, you can be sure that you can safely use the more accurate version without having to worry about the performance. So if you want more accurate timestamps, feel free to use the last method. 安全的将秒转换为纳秒的方法,避免整数/浮点数溢出?
  • As a bonus, I benchmarked @dawg's answer, which is the exact same idea as "the more accurate method", but is done via two calls to math.modf() instead of directly calculating the whole/fraction manually. Their answer is the slowest at 33.54755139999557 seconds. I wouldn't recommend it. Besides, the primary idea behind their technique was just to discard everything after the first three float decimals, which doesn't even matter for any practical purposes, and if their removal is truly desired then it can be achieved without slow math.modf() calls by simply changing my "more accurate" variant's final line to say whole * 1_000_000_000 + (int(frac * 1e3) * 1_000_000) instead, which achieves that decimal truncation technique in 27.95227960000746 seconds instead.

There's also a third method via the discussed decimal library which would have perfect mathematical precision (it doesn't use floats), but it's very slow, so I didn't include it.

huangapple
  • 本文由 发表于 2023年6月29日 02:58:18
  • 转载请务必保留本文链接:https://go.coder-hub.com/76575991.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定