如何在大数据集中找到指定范围内的最大值?

huangapple go评论67阅读模式
英文:

How to find the maximum value for given range in a big data set?

问题

我有一个名为Jon的大型数据集,看起来像这样:

如何在大数据集中找到指定范围内的最大值?

我还有另一个文件,我将其命名为"test",其中包含我想在Jon文件中查看的起始和结束坐标。

如何在大数据集中找到指定范围内的最大值?

根据这些信息,您可以帮助我编写一段代码,以便为测试文件中的每行坐标提供最大的lgmeandiff信息。例如:test[c(3),],坐标位于358-366之间。因此,我想在Jon文件中查看这些坐标值,并选择在该范围内具有最大lgmeandiff的行,并将该信息写入输出文件中,对于每个坐标。

for(i in 1:nrow(test)){
  listofcats <- seq.int(test$from[i], test$to[i])
}

tempframe <- c()
outputframe <- as.data.frame(matrix(nrow = 0, ncol = ncol(Jon)))

for(i in 1:nrow(test)){
  for(k in 1:nrow(Jon)){
      tempframe <- seq.int(test$from[i], test$to[i])
      tempMax <- Jon[c(max(abs(Jon$lgmeandiff[k] %in% tempframe))),]
      outputframe <- rbind(tempframe,outputframe)
    }
  }
}

编辑:

数据太大了,所以我包含了每个数据集的dput(head()):

对于Jon数据集:

structure(list(TTS = c(291L, 322L, 358L, 360L, 361L, 363L), lgmeandiff = c(-922337203685478, 
-922337203685478, -0.0954, -0.9885, -1.4739, -3.7959), lgtotdiff = c(-922337203685478, 
-922337203685478, 3.2265, 2.3334, 1.848, -0.4739), meandiff = c(0, 
0, 0.936, 0.504, 0.36, 0.072), totdiff = c(0, 0, 9.36, 5.04, 
3.6, 0.72), premean = c(0, 0.720000028610229, 1.15200004577637, 
1.44000005722046, 1.58400001525879, 1.87200012207031), precnt = c(0, 
7.20000028610229, 11.5200004577637, 14.4000005722046, 15.840000629425, 
18.720000743866), sufmean = c(0, 0.720000028610229, 2.08800010681152, 
1.94400005340576, 1.94400005340576, 1.94400005340576), sufcnt = c(0, 
7.20000028610229, 20.8800008296967, 19.4400007724762, 19.4400007724762, 
19.4400007724762)), row.names = c(NA, 6L), class = "data.frame")

对于测试数据集:

structure(list(from = c(291, 322, 358, 371, 392, 395), to = c(291L, 
322L, 366L, 382L, 392L, 401L)), row.names = c(1L, 2L, 3L, 7L, 
10L, 11L), class = "data.frame")
英文:

I have a big dataset I named Jon that looks like this:

如何在大数据集中找到指定范围内的最大值?

and i have another file that i named "test" that has the start and end coordinates that I want to look at in the Jon file.

如何在大数据集中找到指定范围内的最大值?

Based on this information, can you help me write a code that will give me the biggest lgmeandiff information for each of the coordinates that lies in the test file for each row.
For example: test[c(3),], the coordinates are between 358-366. SO I want to look at these coordinates values in the Jon file and choose the row that has the biggest lgmeandiff for that range and write that information to an output file for each of coordinates.

for(i in 1:nrow(test)){
  listofcats &lt;- seq.int(test$from[i], test$to[i])
}

tempframe &lt;- c()
outputframe &lt;- as.data.frame(matrix(nrow = 0, ncol = ncol(Jon)))

for(i in 1:nrow(test)){
  for(k in 1:nrow(Jon)){
      tempframe &lt;- seq.int(test$from[i], test$to[i])
      tempMax &lt;- Jon[c(max(abs(Jon$lgmeandiff[k] %in% tempframe))),]
      outputframe &lt;- rbind(tempframe,outputframe)
    }
  }
}

Edit:

Data are too large, so I am including the dput(head()) for each data set:

for Jon dataset;

    structure(list(TTS = c(291L, 322L, 358L, 360L, 361L, 363L), lgmeandiff = c(-922337203685478, 
    -922337203685478, -0.0954, -0.9885, -1.4739, -3.7959), lgtotdiff = c(-922337203685478, 
    -922337203685478, 3.2265, 2.3334, 1.848, -0.4739), meandiff = c(0, 
    0, 0.936, 0.504, 0.36, 0.072), totdiff = c(0, 0, 9.36, 5.04, 
    3.6, 0.72), premean = c(0, 0.720000028610229, 1.15200004577637, 
    1.44000005722046, 1.58400001525879, 1.87200012207031), precnt = c(0, 
    7.20000028610229, 11.5200004577637, 14.4000005722046, 15.840000629425, 
    18.720000743866), sufmean = c(0, 0.720000028610229, 2.08800010681152, 
    1.94400005340576, 1.94400005340576, 1.94400005340576), sufcnt = c(0, 
    7.20000028610229, 20.8800008296967, 19.4400007724762, 19.4400007724762, 
    19.4400007724762)), row.names = c(NA, 6L), class = &quot;data.frame&quot;)

for test dataset

structure(list(from = c(291, 322, 358, 371, 392, 395), to = c(291L, 
322L, 366L, 382L, 392L, 401L)), row.names = c(1L, 2L, 3L, 7L, 
10L, 11L), class = &quot;data.frame&quot;)

答案1

得分: 4

join_bydplyr 1.1.0 中添加,用于创建连接规范。在您的情况下,您希望在 TSS 位于 fromto 之间(包括边界)时进行合并:

library(dplyr)

full_join(jon, test, by = join_by(between(TTS, from, to))) %>%
  slice_max(lgmeandiff, by = c(from, to)) %>%
  select(from, to, lgmeandiff)

输出

  from  to    lgmeandiff
1  291 291 -9.223372e+14
2  322 322 -9.223372e+14
3  358 366 -9.540000e-02
4  371 382            NA
5  392 392            NA
6  395 401            NA

以下是将输出写入Excel文件的一种选项,其中每个坐标对将成为工作簿中的一个工作表:

library(dplyr)

full_join(jon, test, by = join_by(between(TTS, from, to))) %>%
  slice_max(lgmeandiff, by = c(from, to)) %>%
  mutate(coord = paste(from, "-", to),
         lgmeandiff = lgmeandiff, .keep = "none") %>%
  split(~ coord) %>%
  writexl::write_xlsx("output.xlsx")

注意:Excel 有一个工作表数量的限制,最多为 255 个,所以如果您有超过 255 个唯一的坐标对(听起来您可能会有更多),那么您可以考虑其他输出类型。

英文:

join_by was added in dplyr 1.1.0 to create a join specification. In your case you want to merge if TSS falls between from and to (inclusive):

library(dplyr)

full_join(jon, test, by = join_by(between(TTS, from, to))) |&gt;
  slice_max(lgmeandiff, by = c(from, to)) |&gt;
  select(from, to, lgmeandiff)

Output

  from  to    lgmeandiff
1  291 291 -9.223372e+14
2  322 322 -9.223372e+14
3  358 366 -9.540000e-02
4  371 382            NA
5  392 392            NA
6  395 401            NA

Here is one option to write the output to an Excel file, where each coordinate pair will be a sheet in the workbook:

library(dplyr)

full_join(jon, test, by = join_by(between(TTS, from, to))) |&gt;
  slice_max(lgmeandiff, by = c(from, to)) |&gt;
  mutate(coord = paste(from, &quot;-&quot;, to),
         lgmeandiff = lgmeandiff, .keep = &quot;none&quot;) |&gt;
  split(~ coord) |&gt;
  writexl::write_xlsx(&quot;output.xlsx&quot;)

Note: Excel has a limit on the number of sheets. It is 255, so if you have more than 255 unique pairs (which is sounds like you might) then you might consider an alternate output type.

答案2

得分: 3

A tidyverse solution:

library(dplyr)
library(purrr)

my_func <- function(df, min, max) {
  df %>%
    filter(TTS >= min, TTS <= max) %>%
    pull(lgmeandiff) %>%
    max()
}

mutate(test, lgmeandiff = map2_dbl(from, to, ~ my_func(Jon, .x, .y)))

   from  to            lgmeandiff
1   291 291 -922337203685478.0000
2   322 322 -922337203685478.0000
3   358 366               -0.0954
7   371 382                  -Inf
10  392 392                  -Inf
11  395 401                  -Inf

The `-Inf` is only occurring because those specific ranges are not available in the rows of `Jon` provided.

@jay.sf's answer is likely a faster one to execute than mine, which should be of preference to you given the size of your dataset.


<details>
<summary>英文:</summary>

A tidyverse solution:

    library(dplyr)
    library(purrr)
    
    my_func &lt;- function(df, min, max) {
      df |&gt; 
        filter(TTS &gt;= min, TTS &lt;= max) |&gt; 
        pull(lgmeandiff) |&gt; 
        max()
    }
    
    mutate(test, lgmeandiff = map2_dbl(from, to, ~ my_func(Jon, .x, .y)))
    
       from  to            lgmeandiff
    1   291 291 -922337203685478.0000
    2   322 322 -922337203685478.0000
    3   358 366               -0.0954
    7   371 382                  -Inf
    10  392 392                  -Inf
    11  395 401                  -Inf

The `-Inf` is only occurring because those specific ranges are not available in the rows of `Jon` provided.

@jay.sf&#39;s answer is likely a faster one to execute than mine, which should be of preference to you given the size of your dataset.

</details>



# 答案3
**得分**: 2

在`Map`函数中使用`seq.int`。

```R
with(test, Map(seq.int, from, to)) |
{
    sapply(., \(i) max(jon[jon$TTS %in% i, 'lgmeandiff']))
}() |
setNames(apply(test, 1, toString))
#      291, 291      322, 322      358, 366      371, 382      392, 392      395, 401 
# -9.223372e+14 -9.223372e+14 -9.540000e-02          -Inf          -Inf          -Inf 
# Warning messages:
# 1: In max(jon[jon$TTS %in% i, 'lgmeandiff']) :
#   no non-missing arguments to max; returning -Inf
# 2: In max(jon[jon$TTS %in% i, 'lgmeandiff']) :
#   no non-missing arguments to max; returning -Inf
# 3: In max(jon[jon$TTS %in% i, 'lgmeandiff']) :
#   no non-missing arguments to max; returning -Inf

更详细的版本,不包含警告:

with(test, Map(seq.int, from, to)) |
{
    sapply(., \(i) {
        v <- jon[jon$TTS %in% i, 'lgmeandiff']
        if (all(is.na(v))) {
            NA_real_
        } else {
            max(jon[jon$TTS %in% i, 'lgmeandiff'])
        }
    })
}() |
setNames(apply(test, 1, toString))
#      291, 291      322, 322      358, 366      371, 382      392, 392      395, 401 
# -9.223372e+14 -9.223372e+14 -9.540000e-02            NA            NA            NA 

你也可以考虑使用max(., na.rm=TRUE)

英文:

Use seq.int in Map.

with(test, Map(seq.int, from, to)) |&gt;
{\(.) sapply(., \(i) max(jon[jon$TTS %in% i, &#39;lgmeandiff&#39;]))}() |&gt;
setNames(apply(test, 1, toString))
#      291, 291      322, 322      358, 366      371, 382      392, 392      395, 401 
# -9.223372e+14 -9.223372e+14 -9.540000e-02          -Inf          -Inf          -Inf 
# Warning messages:
# 1: In max(jon[jon$TTS %in% i, &quot;lgmeandiff&quot;]) :
#   no non-missing arguments to max; returning -Inf
# 2: In max(jon[jon$TTS %in% i, &quot;lgmeandiff&quot;]) :
#   no non-missing arguments to max; returning -Inf
# 3: In max(jon[jon$TTS %in% i, &quot;lgmeandiff&quot;]) :
#   no non-missing arguments to max; returning -Inf

More verbose version without warnings:

with(test, Map(seq.int, from, to)) |&gt;
{\(.) sapply(., \(i) {
v &lt;- jon[jon$TTS %in% i, &#39;lgmeandiff&#39;]
if (all(is.na(v))) {
NA_real_
} else {
max(jon[jon$TTS %in% i, &#39;lgmeandiff&#39;])
}
})}() |&gt;
setNames(apply(test, 1, toString))
#      291, 291      322, 322      358, 366      371, 382      392, 392      395, 401 
# -9.223372e+14 -9.223372e+14 -9.540000e-02            NA            NA            NA 

You could also consider max(., na.rm=TRUE).


Data:

jon &lt;- structure(list(TTS = c(291L, 322L, 358L, 360L, 361L, 363L), lgmeandiff = c(-922337203685478, 
-922337203685478, -0.0954, -0.9885, -1.4739, -3.7959), lgtotdiff = c(-922337203685478, 
-922337203685478, 3.2265, 2.3334, 1.848, -0.4739), meandiff = c(0, 
0, 0.936, 0.504, 0.36, 0.072), totdiff = c(0, 0, 9.36, 5.04, 
3.6, 0.72), premean = c(0, 0.720000028610229, 1.15200004577637, 
1.44000005722046, 1.58400001525879, 1.87200012207031), precnt = c(0, 
7.20000028610229, 11.5200004577637, 14.4000005722046, 15.840000629425, 
18.720000743866), sufmean = c(0, 0.720000028610229, 2.08800010681152, 
1.94400005340576, 1.94400005340576, 1.94400005340576), sufcnt = c(0, 
7.20000028610229, 20.8800008296967, 19.4400007724762, 19.4400007724762, 
19.4400007724762)), row.names = c(NA, 6L), class = &quot;data.frame&quot;)
test &lt;- structure(list(from = c(291, 322, 358, 371, 392, 395), to = c(291L, 
322L, 366L, 382L, 392L, 401L)), row.names = c(1L, 2L, 3L, 7L, 
10L, 11L), class = &quot;data.frame&quot;)

huangapple
  • 本文由 发表于 2023年6月26日 23:16:04
  • 转载请务必保留本文链接:https://go.coder-hub.com/76558022.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定