英文:
Poor performance when looping over numpy array
问题
以下是您要翻译的部分:
"使用get_height函数,我计算每次扫描(例如我的示例中的y、z坐标)两个点云之间的高度差异。
我的算法有效,但平均需要1.93秒。如何提高性能?
编辑:我附上了一个完全工作的示例
import numpy as np
import matplotlib.pyplot as plt
def generate_random_dataset(N,x_max):
# 创建'x'列
unique_x = np.linspace(0, x_max, x_max*10+1)
x = np.random.choice(unique_x, N) # 生成带有重复值的数组
# 创建'y'列
y = np.random.uniform(-5, 5, N)
# 创建'z'列
z = - y**2 + 5 + np.random.normal(0, 1, N)
# 创建'A'数组
A = np.column_stack((x, y, z))
return A
def get_height(A0,A1):
# 获取两个扫描中都存在的唯一x值
ux0 = np.unique(A0[:,0])
ux1 = np.unique(A1[:,0])
ux = np.intersect1d(ux0,ux1)
# 获取每个唯一x值的高度
h = []
for x in ux:
# 获取较低扫描的切片
mask0 = (A0[:,0] == x)
z0 = A0[mask0,2]
# 获取较高扫描的切片
mask1 = (A1[:,0] == x)
z1 = A1[mask1,2]
# 获取高度差异
height = np.max(z1) - np.max(z0)
# 将结果附加到列表中
h.append(height)
# 将列表转换为数组
h = np.array(h)
return ux, h
# 运行脚本
A0 = generate_random_dataset(N=300000,x_max=100)
A1 = generate_random_dataset(N=310000,x_max=120)
A1[:,2] = A1[:,2] - 0.001*(A1[:,0]-50)**2 + 5 # 使A1比A0更高且不同
# 应用函数
%timeit ux,h = get_height(A0,A1)
ux0 = np.unique(A0[:,0])
ux1 = np.unique(A1[:,0])
ux = np.intersect1d(ux0,ux1)
# 绘图
fig = plt.figure(figsize=(4.24*1.5,3*1.5))
ax = plt.subplot(111)
ax.scatter(ux,h)
ax.set_xlabel('x [mm]')
ax.set_ylabel('h [mm]')
plt.show()
我尝试过使用之前提到的np.lexsort方法,但对于两个数组,该方法不起作用。
我希望以不同的方式解决这个问题(而不是循环遍历唯一的x值),但我无法找到解决方案。"
英文:
With the function get_height I calculate the height difference between two point clouds for every scan (y,z-coordinates in my example).
My algorithm works but takes 1.93 s on average. How can I improve the performance?
EDIT: I attached a fully working example
import numpy as np
import matplotlib.pyplot as plt
def generate_random_dataset(N,x_max):
# Create the 'x' column
unique_x = np.linspace(0, x_max, x_max*10+1)
x = np.random.choice(unique_x, N) # Generate the array with repeated values
# Create the 'y' column
y = np.random.uniform(-5, 5, N)
# Create the 'z' column
z = - y**2 + 5 + np.random.normal(0, 1, N)
# Create the 'A' array
A = np.column_stack((x, y, z))
return A
def get_height(A0,A1):
# get unique x values that are in both scans
ux0 = np.unique(A0[:,0])
ux1 = np.unique(A1[:,0])
ux = np.intersect1d(ux0,ux1)
# get height at each unique x value
h = []
for x in ux:
# get slice of lower scan
mask0 = (A0[:,0] == x)
z0 = A0[mask0,2]
# get slice of upper scan
mask1 = (A1[:,0] == x)
z1 = A1[mask1,2]
# get height difference
height = np.max(z1) - np.max(z0)
# append results to list
h.append(height)
# convert list to array
h = np.array(h)
return ux, h
# run script
A0 = generate_random_dataset(N=300000,x_max=100)
A1 = generate_random_dataset(N=310000,x_max=120)
A1[:,2] = A1[:,2] - 0.001*(A1[:,0]-50)**2 + 5 # make A1 higher and different than A0
# apply function
%timeit ux,h = get_height(A0,A1)
ux0 = np.unique(A0[:,0])
ux1 = np.unique(A1[:,0])
ux = np.intersect1d(ux0,ux1)
# plot
fig = plt.figure(figsize=(4.24*1.5,3*1.5))
ax = plt.subplot(111)
ax.scatter(ux,h)
ax.set_xlabel('x [mm]')
ax.set_ylabel('h [mm]')
plt.show()
I've tried using np.lexsort approach from a previous question of mine but that approach doesn't work for two arrays.
I want to approach this problem differently (without looping over unique x values) but I can't figure out a solution.
答案1
得分: 0
以下是您要翻译的内容:
可能有一个 numpy
解决方案,但与每次迭代中的查找的 python
循环相比,使用 pandas
目前要快得多,甚至包括将数组转换为数据帧的开销。
import pandas as pd
def get_height_pd(A0, A1):
df0 = pd.DataFrame(A0)
df1 = pd.DataFrame(A1)
m0 = df0.groupby(0)[2].max()
m1 = df1.groupby(0)[2].max()
return (m1 - m0).dropna() # dropna会去掉不相交的部分
或者,可能稍微更快一些,使用系列。
def get_height_s(A0, A1):
s0 = pd.Series(A0[:, 2])
s1 = pd.Series(A1[:, 2])
m0 = s0.groupby(A0[:, 0]).max()
m1 = s1.groupby(A1[:, 0]).max()
return (m1 - m0).dropna()
英文:
There is probably a numpy
solution, but in the meantime using pandas
is much faster than a python
loop with lookup in each iteration, even including the overhead of converting the arrays into dataframes.
import pandas as pd
def get_height_pd(A0, A1):
df0 = pd.DataFrame(A0)
df1 = pd.DataFrame(A1)
m0 = df0.groupby(0)[2].max()
m1 = df1.groupby(0)[2].max()
return (m1 - m0).dropna() # dropna gets rid of the non-intersecting ones
Alternatively, possibly a little faster, use series.
def get_height_s(A0, A1):
s0 = pd.Series(A0[:, 2])
s1 = pd.Series(A1[:, 2])
m0 = s0.groupby(A0[:, 0]).max()
m1 = s1.groupby(A1[:, 0]).max()
return (m1 - m0).dropna()
答案2
得分: 0
这里是一个使用numpy
的不太美观的解决方案,使用此函数来获取最小值和最大值。将其中一个数组转置,使其位于另一个数组的下方并以相反方向(y' = offset - y
,其中offset是一个合适的较小数值),然后将这两个数组连接在一起,然后找到每个x的最小值和最大值。每行中的最小值将是从A1的最大值到offset - maximum
,每行中的最大值将是从A0的最大值。然后反转转置以获取高度差异。
def agg_minmax(a): # 来自 https://stackoverflow.com/a/58908648/567595
sidx = np.lexsort(a[:,::-1].T)
b = a[sidx]
m = np.r_[True,b[:-1,0]!=b[1:,0],True]
return np.c_[b[m[:-1],:2], b[m[1:],1]]
def get_height(A0, A1):
min0 = A0[:, 2].min()
offset = min0 + A1[:, 2].min() - 1
b0 = A0[:, [0, 2]]
b1 = np.array([A1[:, 0], offset - A1[:, 2]]).T
c = np.concatenate((b0, b1))
agg = agg_minmax(c)
f = agg[(agg[:, 1] < min0) & (agg[:, 2] >= min0)] # 过滤掉不适用的行
return f[:, 0], offset - f[:, 1] - f[:, 2]
它比pandas解决方案慢,但也许可以进行调整。
英文:
Here's an ugly numpy
solution using this function to get the min and max. Transpose one of the arrays so that it is all below and in opposite direction to the other (y' = offset - y
where offset is a suitable low number), concatenate the two arrays together, then find the min and max for each x. The min in each row will be offset - maximum
from A1, and the max in each row will be the maximum from A0. Then reverse the transposition to get the difference in heights.
def agg_minmax(a): # from https://stackoverflow.com/a/58908648/567595
sidx = np.lexsort(a[:,::-1].T)
b = a[sidx]
m = np.r_[True,b[:-1,0]!=b[1:,0],True]
return np.c_[b[m[:-1],:2], b[m[1:],1]]
def get_height(A0, A1):
min0 = A0[:, 2].min()
offset = min0 + A1[:, 2].min() - 1
b0 = A0[:, [0, 2]]
b1 = np.array([A1[:, 0], offset - A1[:, 2]]).T
c = np.concatenate((b0, b1))
agg = agg_minmax(c)
f = agg[(agg[:, 1] < min0) & (agg[:, 2] >= min0)] # filter out the not-applicable rows
return f[:, 0], offset - f[:, 1] - f[:, 2]
It's slower than the pandas solutions but perhaps can be tweaked.
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论