英文:
Tensorflow images classification
问题
我一直在遵循官方TensorFlow指南进行图像分类,因为我想编写一个钢铁废料分类器脚本。在使用一组各种废料照片训练模型之后,我测试了脚本,更多或多或少地按照预期工作。问题实际上是在我提交非钢铁图像(如汽车、花朵和动物)进行测试时出现的,事实上,正如你可以想象的那样,脚本应该几乎不给出结果,但实际上它确实给出了从80%到98%不等的结果,我真的找不到处理错误或未经训练的类别分类的方法。你有没有任何提示或高级指南,以完善脚本?任何帮助都非常感谢 ![]()
英文:
I've been following the official tensorflow guide for image classification because I want to code a steel scrap classifier script. After training the model with a set of various scrap photos I've tested the script and more or less it works as it should. Problems are actually popping out whenever I submit for test non steel images (like cars, flowers and animals), in fact as you can imagine the script should give almost 0% result but instead it actually gives ranging from 80% to 98% result and I can't really find a way to handle errors or non trained class classification. Do you have any tips or advanced guides in order to refine the script? Any help is very much appreciated ![]()
答案1
得分: 1
你的分类器在其他对象(如钢材)上效果不好,因为这些图像不在分布之内。解决这个问题的常见方法是使用两阶段模型:
-
钢材 vs. 非钢材提取:一个简单的方法是只是用一个布尔值指示图像是否包含钢材。一个更复杂的方法是使用边界框提取钢材,可以通过微调诸如 YOLO 这样的骨干网络来实现。
-
废旧 vs. 非废旧分类器:你已经建立了这个,所以你已经完成了一半。
英文:
Your classifier does not work well on other objects as steel because these images are out of distribution. A common solution to this problem is to use a two-stage model:
-
Steel vs. non-steel extraction: An easy way would be to just have a bool to indicate whether a picture contains steel or not. A more sophisticated approach would be to extract steel using bounding boxes, which can be done by finetuning a backbone such as YOLO.
-
Scrap vs. non-scrap classifier: You already built this, so you're halfway done.
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。


评论