如何规范化图像

huangapple go评论70阅读模式
英文:

How to Normalize Image

问题

我正在进行一个工作,在这个工作中,我需要根据模型和信号创建一幅图像,这些图像分别是信号1和信号2的结果:

如何规范化图像

如何规范化图像

但理想情况下,我需要得到类似这样的结果:

如何规范化图像

如何规范化图像 我也接受其他方法或图像处理来获得这样的结果。

我尝试了一些基本的归一化方法,但我能得到的最好结果是这个:

如何规范化图像 仍然有一些噪音。

提前感谢。

英文:

I'm doing a job where I need to create an image from a model and signal, and I have these images as the result for signal 1 and 2, respectively:

如何规范化图像

如何规范化图像

But ideally I need to get something like this:

如何规范化图像

如何规范化图像 I'm also accepting other methods or image processing to get the result.

I tried some basic normalization methods, but the better I could get is this:

如何规范化图像 that still has some noise.

Thanks in advance.

答案1

得分: 0

假设您的所有图像在信号强度方面都具有相同的自顶向下梯度,且在水平方向上具有恒定的响应,那么您可以使用类似以下的方法来规范化响应(伪代码,因为我尝试了一些与Python和OpenCV不同的东西,应该很容易复制这个过程):

M = max(img, axis=1)  # 每行的最大值
M = dilation(M, 15)   # 每个最大值都有更大的范围
img = img / M         # 为最大强度规范化每一行
output = img > 0.5    # 一些固定阈值

在规范化之后,固定的阈值能够轻松提取每个局部最大值。

在膨胀中的15(注意此时的M是一个1D数组)将是1D结构元素的长度。这应该足够大,以覆盖行之间的间隙,对于第一个示例来说,5应该足够,而第二个示例可能需要10。

这里的想法是,如果您不知道每行上点的间距有多接近,那么逐行规范化会更容易实现。这个操作相当于在图像上应用一个结构元素,它的高度为15个像素,宽度为无限。

如何规范化图像

英文:

Assuming all your images have the same top-down gradient in the signal strength, with a constant response horizontally, then you can normalize the response using something like this (psuedo-code, because I experimented with something other than Python and OpenCV, it should be easy to replicate this):

M = max(img, axis=1)  # the maximum value of each row
M = dilation(M, 15)   # each maximum has a larger reach
img = img / M         # normalize each row for the maximum intensity
output = img > 0.5    # some fixed threshold

After the normalization, the fixed threshold was able to extract each of the local maxima easily.

The 15 in the dilation (note that M is a 1D array at this point) would be the length of the 1D structuring element. This should be large enough to cover the gaps between the rows, 5 should be enough for the first example, the second needs maybe 10.

The idea here is that the row-wise normalization is easier to accomplish if you don't know how closely together the dots are on each row. This operation would be equivalent to applying a dilation to the image using a structuring element that is 15 pixels high and infinitely wide.

如何规范化图像

huangapple
  • 本文由 发表于 2023年6月26日 07:34:18
  • 转载请务必保留本文链接:https://go.coder-hub.com/76552799.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定