如何从图表中网页抓取数据

huangapple go评论102阅读模式
英文:

how to web scrape data from graph

问题

你好,我想从这个互联网页面上进行数据抓取,尤其是历史数据的图表(这里这里)。

也许有人可以帮助我如何继续进行?更重要的是,我们如何在哪里找到这些数据。

英文:

hi I would like to web scrape data from this internet page especially the graph of historical data (Here and Here)

Maybe someone can help me how to proceed ? and more than that how can we do where and how to find the data.

答案1

得分: 1

以下是您要翻译的代码部分:

import json
import requests
import pandas as pd
from bs4 import BeautifulSoup

url = "https://www.quantalys.com/Fonds/Historique/19801"

soup = BeautifulSoup(requests.get(url).content, "html.parser")
data = soup.select_one("[data-chartconfig]")["value"]
data = json.loads(data)

df = pd.DataFrame(data["dataProvider"])
df.columns = ["Date"] + [
    t["balloonText"].split(":", maxsplit=1)[-1].strip() for t in data["graphs"]
]
print(df.head())

Prints:

         Date  Amundi Euro High Yield Bond A EUR AD  Oblig. Europe Ht Rendt  ICE BofA European Currency High Yield Index
0  2020-06-19                                100.00                  100.00                                       100.00
1  2020-06-20                                100.00                  100.00                                       100.00
2  2020-06-21                                100.00                  100.00                                       100.00
3  2020-06-22                                 99.07                   99.78                                        99.80
4  2020-06-23                                 99.07                   99.85                                        99.85

如果您需要更多帮助,请告诉我。

英文:

The data for the graph is stored inside the HTML document in Json form. To parse it you can use next example:

import json
import requests
import pandas as pd
from bs4 import BeautifulSoup


url = "https://www.quantalys.com/Fonds/Historique/19801"

soup = BeautifulSoup(requests.get(url).content, "html.parser")
data = soup.select_one("[data-chartconfig]")["value"]
data = json.loads(data)

df = pd.DataFrame(data["dataProvider"])
df.columns = ["Date"] + [
    t["balloonText"].split(":", maxsplit=1)[-1].strip() for t in data["graphs"]
]
print(df.head())

Prints:

         Date  Amundi Euro High Yield Bond A EUR AD  Oblig. Europe Ht Rendt  ICE BofA European Currency High Yield Index
0  2020-06-19                                100.00                  100.00                                       100.00
1  2020-06-20                                100.00                  100.00                                       100.00
2  2020-06-21                                100.00                  100.00                                       100.00
3  2020-06-22                                 99.07                   99.78                                        99.80
4  2020-06-23                                 99.07                   99.85                                        99.85

huangapple
  • 本文由 发表于 2023年6月22日 04:25:14
  • 转载请务必保留本文链接:https://go.coder-hub.com/76526893.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定