如何在R中使用 “tbl_graphs”?

huangapple go评论106阅读模式
英文:

How to Use "tbl_graphs" in R?

问题

我正在使用R编程语言工作。

基于一个shapefile,我试图可视化/找出两个坐标之间的驾驶距离(例如,CN塔和多伦多皮尔逊机场)。

首先我加载了shapefile:

library(sf)
library(rgdal)
library(sfnetworks)
library(igraph)
library(dplyr)
library(tidygraph)

# 设置shapefile的URL
url <- "https://www12.statcan.gc.ca/census-recensement/2011/geo/RNF-FRR/files-fichiers/lrnf000r22a_e.zip"

# 创建一个临时文件夹来下载和解压缩shapefile
temp_dir <- tempdir()
temp_file <- file.path(temp_dir, "lrnf000r22a_e.zip")

# 下载shapefile到临时文件夹
download.file(url, temp_file)

# 从下载的zip文件中解压shapefile
unzip(temp_file, exdir = temp_dir)

# 使用rgdal包读取shapefile
# 来源:https://gis.stackexchange.com/questions/456748/strategies-for-working-with-large-shapefiles/456798#456798
a = st_read(file.path(temp_dir, "lrnf000r22a_e.shp"), query="select * from lrnf000r22a_e where PRUID_R ='35'")

shapefile看起来像这样:

包含570,706个要素和21个字段的简单要素集
几何类型:LINESTRING
维度:XY
边界框:xmin:5963148 ymin:665490.8 xmax:7581671 ymax:2212179
投影的CRS:NAD83 / 加拿大统计局兰伯特
前10个要素:
   OBJECTID NGD_UID NAME TYPE DIR AFL_VAL ATL_VAL AFR_VAL ATR_VAL CSDUID_L                           CSDNAME_L CSDTYPE_L CSDUID_R                           CSDNAME_R CSDTYPE_R PRUID_L PRNAME_L PRUID_R PRNAME_R RANK
1         4 3434819     <NA> <NA> <NA>    <NA>    <NA>    <NA>    <NA>     <NA>  3526003                           Fort Erie         T  3526003                           Fort Erie         T      35  Ontario      35  Ontario    5
2         5 1358252    South LINE <NA>    <NA>    <NA>    <NA>    <NA>  3551027                Gordon/Barrie Island        MU  3551027                Gordon/Barrie Island        MU      35  Ontario      35  Ontario    5
3         8 1778927     <NA> <NA> <NA>    <NA>    <NA>    <NA>    <NA>  3512054                           Wollaston        TP  3512054                           Wollaston        TP      35  Ontario      35  Ontario    5
4        11  731932   Albion   RD <NA>    <NA>    <NA>    2010    2010  3520005                             Toronto         C  3520005                             Toronto         C      35  Ontario      35  Ontario    3
5        18 3123617 County 41   RD <NA>     640     708     635     709  3511015                     Greater Napanee         T  3511015                     Greater Napanee         T      35  Ontario      35  Ontario    3
6        20 4814160     <NA> <NA> <NA>    <NA>    <NA>    <NA>    <NA>  3553005     Greater Sudbury / Grand Sudbury        CV  3553005     Greater Sudbury / Grand Sudbury        CV      35  Ontario      35  Ontario    5
7        21 1817031     <NA> <NA> <NA>    <NA>    <NA>    <NA>    <NA>  3537028                         Amherstburg         T  3537028                         Amherstburg         T      35  Ontario      35  Ontario    5
8        24 4825761     <NA> <NA> <NA>    <NA>    <NA>    <NA>    <NA>  3554094 Timiskaming, Unorganized, West Part        NO  3554094 Timiskaming, Unorganized, West Part        NO      35  Ontario      35  Ontario    5
9        25  544891   Dunelm   DR <NA>       1       9       2      10  3526053                      St. Catharines        CY  3526053                      St. Catharines        CY      35  Ontario      35  Ontario    5
10       28 1835384 Seven Oaks   DR <NA>     730     974     731     975  3515005             Otonabee-South Monaghan        TP  3515005             Otonabee-South Monaghan        TP      35  Ontario      35  Ontario    5
   CLASS               _ogr_geometry_
1     23 LINESTRING (7269806 859183,...
2     23 LINESTRING (6921247 1133452...
3     23 LINESTRING (7320857 1089403..

然后我尝试通过将道路网络视为图来计算距离:

# 将shapefile转换为sfnetwork对象
net <- as_sfnetwork(a)

# 在WGS84(EPSG:4326)中定义两个兴趣点
pt1 <- st_point(c(-79.61203, 43.68312))
pt2 <- st_point(c(-79.61203, 43.64256))

# 将点的CRS设置为WGS84(EPSG:4326)
pt1 <- st_sfc(pt1, crs = 4326)
pt2 <- st_sfc(pt2, crs = 4326)

# 将点转换为网络的CRS
pt1_transformed <- st_transform(pt1, st_crs(net))
pt2_transformed <- st_transform(pt2, st_crs(net))

# 找到变换后的兴趣点在网络上的最近点
n1 <- st_nearest_feature(pt1_transformed, net)
n2 <- st_nearest_feature(pt2_transformed, net)

从这里,我创建了一个“tbl_graph”:

path <- net %>%
    activate(edges) %>%
    mutate(weight = edge_length()) %>%
    as_tbl_graph()

> path

<details>
<summary>英文:</summary>

I am working with the R programming language.

**Based on a shapefile, I am trying to visualize/find out the driving distance between two coordinates (e.g. CN Tower and Toronto Pearson Airport).**

First I loaded the shapefile:


    
    library(sf)
    library(rgdal)
    library(sfnetworks)
    library(igraph)
    library(dplyr)
    library(tidygraph)
    
    # Set the URL for the shapefile
    url &lt;- &quot;https://www12.statcan.gc.ca/census-recensement/2011/geo/RNF-FRR/files-fichiers/lrnf000r22a_e.zip&quot;
    
    # Create a temporary folder to download and extract the shapefile
    temp_dir &lt;- tempdir()
    temp_file &lt;- file.path(temp_dir, &quot;lrnf000r22a_e.zip&quot;)
    
    # Download the shapefile to the temporary folder
    download.file(url, temp_file)
    
    # Extract the shapefile from the downloaded zip file
    unzip(temp_file, exdir = temp_dir)
    
    # Read the shapefile using the rgdal package
    # source: https://gis.stackexchange.com/questions/456748/strategies-for-working-with-large-shapefiles/456798#456798
    a = st_read(file.path(temp_dir, &quot;lrnf000r22a_e.shp&quot;), query=&quot;select * from lrnf000r22a_e where PRUID_R =&#39;35&#39;&quot;)

The shapefile looks something like this:

    Simple feature collection with 570706 features and 21 fields
    Geometry type: LINESTRING
    Dimension:     XY
    Bounding box:  xmin: 5963148 ymin: 665490.8 xmax: 7581671 ymax: 2212179
    Projected CRS: NAD83 / Statistics Canada Lambert
    First 10 features:
       OBJECTID NGD_UID       NAME TYPE  DIR AFL_VAL ATL_VAL AFR_VAL ATR_VAL CSDUID_L                           CSDNAME_L CSDTYPE_L CSDUID_R                           CSDNAME_R CSDTYPE_R PRUID_L PRNAME_L PRUID_R PRNAME_R RANK
    1         4 3434819       &lt;NA&gt; &lt;NA&gt; &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;  3526003                           Fort Erie         T  3526003                           Fort Erie         T      35  Ontario      35  Ontario    5
    2         5 1358252      South LINE &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;  3551027                Gordon/Barrie Island        MU  3551027                Gordon/Barrie Island        MU      35  Ontario      35  Ontario    5
    3         8 1778927       &lt;NA&gt; &lt;NA&gt; &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;  3512054                           Wollaston        TP  3512054                           Wollaston        TP      35  Ontario      35  Ontario    5
    4        11  731932     Albion   RD &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    2010    2010  3520005                             Toronto         C  3520005                             Toronto         C      35  Ontario      35  Ontario    3
    5        18 3123617  County 41   RD &lt;NA&gt;     640     708     635     709  3511015                     Greater Napanee         T  3511015                     Greater Napanee         T      35  Ontario      35  Ontario    3
    6        20 4814160       &lt;NA&gt; &lt;NA&gt; &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;  3553005     Greater Sudbury / Grand Sudbury        CV  3553005     Greater Sudbury / Grand Sudbury        CV      35  Ontario      35  Ontario    5
    7        21 1817031       &lt;NA&gt; &lt;NA&gt; &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;  3537028                         Amherstburg         T  3537028                         Amherstburg         T      35  Ontario      35  Ontario    5
    8        24 4825761       &lt;NA&gt; &lt;NA&gt; &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;  3554094 Timiskaming, Unorganized, West Part        NO  3554094 Timiskaming, Unorganized, West Part        NO      35  Ontario      35  Ontario    5
    9        25  544891     Dunelm   DR &lt;NA&gt;       1       9       2      10  3526053                      St. Catharines        CY  3526053                      St. Catharines        CY      35  Ontario      35  Ontario    5
    10       28 1835384 Seven Oaks   DR &lt;NA&gt;     730     974     731     975  3515005             Otonabee-South Monaghan        TP  3515005             Otonabee-South Monaghan        TP      35  Ontario      35  Ontario    5
       CLASS                 _ogr_geometry_
    1     23 LINESTRING (7269806 859183,...
    2     23 LINESTRING (6921247 1133452...
    3     23 LINESTRING (7320857 1089403..


Then I tried to calculate the distance by treating the road network as a graph:

    # Convert the shapefile to an sfnetwork object
    net &lt;- as_sfnetwork(a)
    
    # Define the two points of interest in WGS84 (EPSG:4326)
    pt1 &lt;- st_point(c(-79.61203, 43.68312))
    pt2 &lt;- st_point(c(-79.61203, 43.64256))
    
    # Set the CRS of the points to WGS84 (EPSG:4326)
    pt1 &lt;- st_sfc(pt1, crs = 4326)
    pt2 &lt;- st_sfc(pt2, crs = 4326)
    
    # Transform the points to the CRS of the network
    pt1_transformed &lt;- st_transform(pt1, st_crs(net))
    pt2_transformed &lt;- st_transform(pt2, st_crs(net))
    
    # Find the nearest points on the network to the transformed points of interest
    n1 &lt;- st_nearest_feature(pt1_transformed, net)
    n2 &lt;- st_nearest_feature(pt2_transformed, net)

From here, I create a &quot;tbl_graph&quot;:

    path &lt;- net %&gt;%
        activate(edges) %&gt;%
        mutate(weight = edge_length()) %&gt;%
        as_tbl_graph()

    &gt; path
    # A tbl_graph: 430824 nodes and 570706 edges
    #
    # A directed multigraph with 442 components
    #
    # Edge Data: 570,706 x 25 (active)
       from    to OBJECTID NGD_UID NAME      TYPE  DIR   AFL_VAL ATL_VAL AFR_VAL ATR_VAL CSDUID_L CSDNAME_L   CSDTYPE~ CSDUID~ CSDNAME_R  CSDTYP~ PRUID_L PRNAME~ PRUID_R PRNAME~ RANK  CLASS                  `_ogr_geometry_` weight
      &lt;int&gt; &lt;int&gt;    &lt;dbl&gt; &lt;chr&gt;   &lt;chr&gt;     &lt;chr&gt; &lt;chr&gt; &lt;chr&gt;   &lt;chr&gt;   &lt;chr&gt;   &lt;chr&gt;   &lt;chr&gt;    &lt;chr&gt;       &lt;chr&gt;    &lt;chr&gt;   &lt;chr&gt;      &lt;chr&gt;   &lt;chr&gt;   &lt;chr&gt;   &lt;chr&gt;   &lt;chr&gt;   &lt;chr&gt; &lt;chr&gt;                  &lt;LINESTRING [m]&gt;    [m]
    1     1     2        4 3434819 NA        NA    NA    NA      NA      NA      NA      3526003  Fort Erie   T        3526003 Fort Erie  T       35      Ontario 35      Ontario 5     23    (7269806 859183, 7269795 859166.~   25.9
    2     3     4        5 1358252 South     LINE  NA    NA      NA      NA      NA      3551027  Gordon/Bar~ MU       3551027 Gordon/Ba~ MU      35      Ontario 35      Ontario 5     23    (6921247 1133452, 6921258 113345~ 1245. 
    3     5     6        8 1778927 NA        NA    NA    NA      NA      NA      NA      3512054  Wollaston   TP       3512054 Wollaston  TP      35      Ontario 35      Ontario 5     23    (7320857 1089403, 7320903 108942~  254. 
    4     7     8       11 731932  Albion    RD    NA    NA      NA      2010    2010    3520005  Toronto     C        3520005 Toronto    C       35      Ontario 35      Ontario 3     21    (7202555 935281.3, 7202653 93533~  111. 
    5     9    10       18 3123617 County 41 RD    NA    640     708     635     709     3511015  Greater Na~ T        3511015 Greater N~ T       35      Ontario 35      Ontario 3     21    (7403627 1039328, 7403431 103963~  367. 
    6    11    12       20 4814160 NA        NA    NA    NA      NA      NA      NA      3553005  Greater Su~ CV       3553005 Greater S~ CV      35      Ontario 35      Ontario 5     21    (7042806 1222708, 7042838 122273~  191. 
    # ... with 570,700 more rows
    #
    # Node Data: 430,824 x 1
        `_ogr_geometry_`
             &lt;POINT [m]&gt;
    1   (7269806 859183)
    2 (7269790 859162.7)
    3  (6921247 1133452)
    # ... with 430,821 more rows

**My Question:** From here, I am not sure how to use the tbl_graph to find the distance between the two points n1 and n2:

    &gt; n1
    [1] 110393
    &gt; n2
    [1] 319271

I think n1 and n2 correspond to the &quot;to&quot; and &quot;from&quot; columns in the &quot;path&quot; tbl_graph - but I am not sure how to use the tbl_graph to find out the distance between n1 and n2.

Can someone please show me how to do this?

Thanks!

</details>


# 答案1
**得分**: 4

`n1` 和 `n2` 是一个名为 `net` 的 `tibble` 的行号索引。这些值可以用于子集化图列表,或者作为 `igraph::shortest_paths()` 函数的 `from` 和 `to` 参数。在这种情况下,如果你使用 `n1` 和 `n2` 来查找最短路径,你可能会看到一些相当奇怪的结果,或者可能只是一个空列表。

此外,`sfnetworks` 对象 `net` 继承自 `tbl_graph` 和 `igraph`,因此 `tiynetworks` 和 `igraph` 的方法应该在不需要转换的情况下正常工作。将 `net` 转换为 `path`,并添加权重,不会更接近所需的路径。它仍然是几乎与之前相同的 `tbl_graph`,只是没有了空间图层。`sfnetworks` 还实现了满足你的主要目标所需的所有内容:`st_network_paths()` 和/或 `to_spatial_shortest_paths()` 转换器。

`sfnetwork` 也被配置为有向(这是默认设置),这很可能会破坏所有的路由尝试,至少在这种情况下。

`st_network_paths()` 方法示例:
``` r
library(sf)
library(sfnetworks)
library(mapview)
library(dplyr)
library(ggplot2)

# ...(代码的其余部分,已经在上面提供了)

igraph 方法示例:

library(igraph)

# ...(代码的其余部分,已经在上面提供了)

tidygraphsfnetworks 的 morphers 示例:

library(tidygraph)

# ...(代码的其余部分,已经在上面提供了)

请注意,以上示例代码中包含了其他内容,只提供了与翻译请求相关的部分。

英文:

n1 & n2 are indeces, row numbers of one of the net tibbles. Those values can be used to subset graph lists or used as from and to parameters for igraph::shortest_paths(). In this case, n1 & n2 probably targeted edges tibble as nodes were not activated first. Means that if you used those n1 & n2 for finding shortest path, you probably witnessed some rather funky results. Or perhaps just an empty list.

Also, the sfnetworks object, net, inherits from tbl_graph and also igraph, so tiynetworks and igraph methods should work just fine on netwithout converting it first. net -> path conversion, while adding weights, leads no closer to desired route. It's still (almost) the same tbl_graph it was before, now without a spatial layer. sfnetworks also implements all what's needed for your main objective: st_network_paths() and/or to_spatial_shortest_paths() morpher.

sfnetwork was also configured to be directed (well, it's a default setting), this most likely will ruin all routing attempts, at least in this case.

sfnetworks::st_network_paths() approach

library(sf)
library(sfnetworks)
library(mapview)
library(dplyr)
library(ggplot2)

shp_url &lt;- &quot;https://www12.statcan.gc.ca/census-recensement/2011/geo/RNF-FRR/files-fichiers/lrnf000r22a_e.zip&quot;
if (!file.exists(basename(shp_url))) curl::curl_download(shp_url, basename(shp_url), quiet = FALSE)            

# keep archive zipped; 
# predefined bbox, small patch in Toronto, 
# covers cover both points and leaves plenty of routing options
a &lt;- read_sf(paste0(&quot;/vsizip/&quot;, basename(shp_url)), 
             wkt_filter = &quot;POLYGON ((7200615 918857, 7211499 918857, 7211499 933387, 7200615 933387, 7200615 918857))&quot;)
a
#&gt; Simple feature collection with 7584 features and 21 fields
#&gt; Geometry type: LINESTRING
#&gt; Dimension:     XY
#&gt; Bounding box:  xmin: 7199959 ymin: 918285.7 xmax: 7211930 ymax: 934030.6
#&gt; Projected CRS: NAD83 / Statistics Canada Lambert
#&gt; # A tibble: 7,584 &#215; 22
#&gt;    OBJECTID NGD_UID NAME    TYPE  DIR   AFL_VAL ATL_VAL AFR_VAL ATR_VAL CSDUID_L
#&gt;       &lt;dbl&gt; &lt;chr&gt;   &lt;chr&gt;   &lt;chr&gt; &lt;chr&gt; &lt;chr&gt;   &lt;chr&gt;   &lt;chr&gt;   &lt;chr&gt;   &lt;chr&gt;   
#&gt;  1      668 4668376 Dixie   RD    &lt;NA&gt;  2520    2520    2531    2543    3521005 
#&gt;  2      874 4617171 401     HWY   &lt;NA&gt;  &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    3521005 
#&gt;  3     2252 4092570 Breton  AVE   &lt;NA&gt;  178     300     175     295     3521005 
#&gt;  4     3320 485941  Kipling AVE   &lt;NA&gt;  &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    3520005 
#&gt;  5     3698 4775771 Eringa… DR    &lt;NA&gt;  99      105     108     120     3520005 
#&gt;  6     3700 507598  Bristol RD    W     &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    3521005 
#&gt;  7     4472 4683515 Airport RD    &lt;NA&gt;  &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    3521005 
#&gt;  8     4759 5779033 401     HWY   &lt;NA&gt;  &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    &lt;NA&gt;    3520005 
#&gt;  9     5051 505570  Grand … RD    &lt;NA&gt;  3496    3530    3511    3525    3521005 
#&gt; 10     5533 5876974 Yorkda… CRES  &lt;NA&gt;  31      67      30      58      3520005 
#&gt; # ℹ 7,574 more rows
#&gt; # ℹ 12 more variables: CSDNAME_L &lt;chr&gt;, CSDTYPE_L &lt;chr&gt;, CSDUID_R &lt;chr&gt;,
#&gt; #   CSDNAME_R &lt;chr&gt;, CSDTYPE_R &lt;chr&gt;, PRUID_L &lt;chr&gt;, PRNAME_L &lt;chr&gt;,
#&gt; #   PRUID_R &lt;chr&gt;, PRNAME_R &lt;chr&gt;, RANK &lt;chr&gt;, CLASS &lt;chr&gt;,
#&gt; #   geometry &lt;LINESTRING [m]&gt;

# from / to points for routing:
pts &lt;- tribble(~point,      ~lon,     ~lat,
                &quot;pt1&quot;, -79.61203, 43.68312,
                &quot;pt2&quot;, -79.61203, 43.64256) %&gt;% 
  st_as_sf(coords =c(&quot;lon&quot;, &quot;lat&quot;), crs = st_crs(4326)) %&gt;% 
  st_transform(st_crs(a)) 

# create un-directed network (default is directed), 
# store edge lenghts as weights
net &lt;- as_sfnetwork(a, directed = FALSE) %&gt;%
  activate(&quot;edges&quot;) %&gt;%
  mutate(weight = edge_length())

# get paths between pt1 &amp; pt2 with sfnetwork
paths_sfn &lt;- st_network_paths(net, 
                              from = pts[pts$point == &quot;pt1&quot;, ], 
                              to =   pts[pts$point == &quot;pt2&quot;, ], 
                              weights = &quot;weight&quot;)
paths_sfn
#&gt; # A tibble: 1 &#215; 2
#&gt;   node_paths edge_paths
#&gt;   &lt;list&gt;     &lt;list&gt;    
#&gt; 1 &lt;int [54]&gt; &lt;int [53]&gt;

# includes list of edge indeces that form the path:
paths_sfn$edge_paths[[1]]
#&gt;  [1] 1027 1032 1295  697  121 2704 2702 2778 1125 1280 4364 1360  235 1686 2048
#&gt; [16] 6115 2266  865 2508 7511 7179 2956 1823 5139 1055 5929 3684 3417 5960 1196
#&gt; [31] 3383 1603 1975 1159 6250 5814   58 1964 3593 4423 3477 4940  383 5784 2362
#&gt; [46] 4120 7251 1970 4834 5155  624 1935 5134

# get edges with matching indeces:
route &lt;- net %&gt;% 
  activate(&quot;edges&quot;) %&gt;% 
  slice(paths_sfn$edge_paths[[1]]) %&gt;% 
  st_as_sf()

# distance:
sum(route$weight)
#&gt; 7505.43 [m]

# visualize
mapview(list(pts, route))

如何在R中使用 “tbl_graphs”?<!-- -->

Path-finding and distance with igraph, using the same net object

library(igraph)

# to find node indeces, keep net nodes activated
net &lt;- net %&gt;% activate(&quot;nodes&quot;)
n1 &lt;- st_nearest_feature(pts[1,], net)
n2 &lt;- st_nearest_feature(pts[2,], net)
node1; node2
#&gt; [1] 1560
#&gt; [1] 3938

# locate those on a map:
net %&gt;% 
  st_as_sf() %&gt;% 
  slice(c(n1, n2)) %&gt;% 
  mapview(layer.name = &quot;net nodes&quot;) +
  mapview(pts)

如何在R中使用 “tbl_graphs”?<!-- -->


# as sfnetwork inherits from tbl_graph and igraph:
class(net)
#&gt; [1] &quot;sfnetwork&quot; &quot;tbl_graph&quot; &quot;igraph&quot;

# we can use igraph::shortest_paths() with our sfnetwork object:
paths_ig &lt;- shortest_paths(net, n1, n2, output = &quot;epath&quot;)

# paths_ig$epath is a list of edges:
str(paths_ig)
#&gt; List of 4
#&gt;  $ vpath        : NULL
#&gt;  $ epath        :List of 1
#&gt;   ..$ : &#39;igraph.es&#39; int [1:53] 1027 1032 1295 697 121 2704 2702 2778 1125 1280 ...
#&gt;   .. ..- attr(*, &quot;env&quot;)=&lt;weakref&gt; 
#&gt;   .. ..- attr(*, &quot;graph&quot;)= chr &quot;aac7eae8-1b4f-11ee-a8b6-53eec7eb8cd4&quot;
#&gt;  $ predecessors : NULL
#&gt;  $ inbound_edges: NULL

# when converted to integer, we&#39;ll have the same index list as 
# from sfnetwork::st_network_paths() :
e &lt;- paths_ig$epath[[1]] %&gt;% as.integer()

# check if those are indeed identical:
identical(e, paths_sfn$edge_paths[[1]])
#&gt; [1] TRUE

# sum edge wights to get path distance:
sum(E(net)[e]$weight)
#&gt; 7505.43 [m]

# we have not altered our original sf object (a) nor 
# sfnetwork object (net), so indeces should still match and we can use
# e for subsetting: a[e,]

ggplot() +
  geom_sf(data = a, color = &quot;grey80&quot;) +
  geom_sf(data = a[e,], linewidth = 1.5, alpha = .6) +
  geom_sf(data = pts, aes(color = point), size = 3) +
  coord_sf(datum = st_crs(a), ylim = c(922000, 930000)) +
  theme_light()

如何在R中使用 “tbl_graphs”?<!-- -->

Morphers by tidygraph and sfnetworks

There are also morphers, i.e. tidygraph::to_shortest_path (would work with previous n1 and n2 objects for from/ to) and sfnetworks::to_spatial_shortest_paths (takes sf points for from / to, just like st_network_paths()) , so there's no need to worry about picking relevant nodes / edges from the network, convert() output is already filtered:

library(tidygraph)

converted_net &lt;-  net %&gt;% convert(to_spatial_shortest_paths, pts[1,], pts[2,])
route_edges &lt;- st_as_sf(converted_net, &quot;edges&quot;)
route_nodes &lt;- st_as_sf(converted_net, &quot;nodes&quot;)

# route length:
sum(route_edges$weight)
#&gt; 7505.43 [m]

ggplot() +
  geom_sf(data = a, color = &quot;grey80&quot;) +
  geom_sf(data = route_edges) +
  geom_sf(data = route_nodes, alpha  = .2) +
  coord_sf(datum = st_crs(a), ylim = c(922000, 930000)) +
  theme_light()

如何在R中使用 “tbl_graphs”?<!-- -->

<sup>Created on 2023-07-05 with reprex v2.0.2</sup>

huangapple
  • 本文由 发表于 2023年6月19日 23:28:46
  • 转载请务必保留本文链接:https://go.coder-hub.com/76508074.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定