删除行,如果第1列的值低于第2列和第3列的值?

huangapple go评论108阅读模式
英文:

How to remove rows if column 1 value is lower than column 2 and column 3?

问题

我想知道如何在列1的值低于列2和列3时删除行。

以下是虚拟数据集的更新:

  1. c <- c(10, 20, 30, 40, 50)
  2. b <- c(40, 2, 40, 10, 50)
  3. a <- c(10, 50, 0.0000891, 60, 100)
  4. id <- c("a", "b", "c", "d", "e")
  5. data <- data.frame(id, a, b, c)
  6. head(data)
  7. # id a b c
  8. #1 a 10 40 10
  9. #2 b 50 2 20
  10. #3 c 8.91e-05 1 0
  11. #4 d 60 10 40
  12. #5 e 100 50 50

在上述虚拟数据集中,我们可以看到例如:data$id "c",列a的值低于列b和列c。

在条件删除后,以下是预期输出:

  1. # id a b c
  2. #1 b 50 2 20
  3. #2 d 60 10 40
  4. #3 e 100 50 50

如果可能的话,更倾向于使用tidyverse方法。谢谢。

英文:

I would like to know how to remove rows if column 1 value is lower than column 2 and column 3 ?

Here is dummy datasets Updated:

  1. c &lt;- c(10, 20, 30, 40, 50)
  2. b &lt;- c(40, 2, 40, 10, 50)
  3. a &lt;- c(10, 50, 0.0000891, 60, 100)
  4. id &lt;- c(&quot;a&quot;, &quot;b&quot;, &quot;c&quot;, &quot;d&quot;, &quot;e&quot;)
  5. data &lt;- data.frame(id, a, b, c)
  6. head(data)
  7. # id a b c
  8. #1 a 10 40 10
  9. #2 b 50 2 20
  10. #3 c 8.91e-05 1 0
  11. #4 d 60 10 40
  12. #5 e 100 50 50

In the above dummy dataset we can see that for example: data$id "c", a column value is lower than "b" and "c" column.

After conditional removalhere is the expected output:

  1. # id a b c
  2. #1 b 50 2 20
  3. #2 d 60 10 40
  4. #3 e 100 50 50

If its possible tidyverse approach more preferred. Thank you.

答案1

得分: 3

另一种允许使用 if_any 进行动态选择的方式:

  1. library(dplyr)
  2. data |&gt;
  3. filter(if_any(b:c, ~ a &gt;= .x))
  4. # id a b c
  5. #1 a 10 40 10
  6. #2 b 50 2 20
  7. #3 d 60 10 40
  8. #4 e 100 50 50

(请注意,这里的代码部分没有进行翻译。)

英文:

Another way that allows dynamic selection with if_any:

  1. library(dplyr)
  2. data |&gt;
  3. filter(if_any(b:c, ~ a &gt;= .x))
  4. # id a b c
  5. #1 a 10 40 10
  6. #2 b 50 2 20
  7. #3 d 60 10 40
  8. #4 e 100 50 50

答案2

得分: 2

以下是代码部分的翻译:

  1. library(dplyr)
  2. # 原始数据集
  3. c <- c(10, 20, 30, 40, 50)
  4. b <- c(40, 2, 40, 10, 50)
  5. a <- c(10, 50, 1, 60, 100)
  6. id <- c("a", "b", "c", "d", "e")
  7. data <- data.frame(id, a, b, c)
  8. data %>%
  9. filter(a > b | a > c)
  10. #> # A tibble: 4 × 4
  11. #> id a b c
  12. #> <chr> <dbl> <dbl> <dbl>
  13. #> 1 a 10 40 10
  14. #> 2 b 50 2 20
  15. #> 3 d 60 10 40
  16. #> 4 e 100 50 50

更新后的数据集:

  1. c <- c(10, 20, 30, 40, 50)
  2. b <- c(40, 2, 40, 10, 50)
  3. a <- c(10, 50, 0.0000891, 60, 100)
  4. id <- c("a", "b", "c", "d", "e")
  5. data <- data.frame(id, a, b, c)
  6. data %>%
  7. filter(a > b | a > c)
  8. #> id a b c
  9. #> 1 b 50 2 20
  10. #> 2 d 60 10 40
  11. #> 3 e 100 50 50

创建于2023年06月19日,使用reprex v2.0.2

英文:

Does this work for you?
Updated to reflect @Mael's comment.

  1. library(dplyr)
  2. #original dataset
  3. c &lt;- c(10, 20, 30, 40, 50)
  4. b &lt;- c(40, 2, 40, 10, 50)
  5. a &lt;- c(10, 50, 1, 60, 100)
  6. id &lt;- c(&quot;a&quot;, &quot;b&quot;, &quot;c&quot;, &quot;d&quot;, &quot;e&quot;)
  7. data &lt;- data.frame(id, a, b, c)
  8. data |&gt;
  9. filter(a &gt; b | a &gt; c)
  10. #&gt; # A tibble: 4 &#215; 4
  11. #&gt; id a b c
  12. #&gt; &lt;chr&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;
  13. #&gt; 1 a 10 40 10
  14. #&gt; 2 b 50 2 20
  15. #&gt; 3 d 60 10 40
  16. #&gt; 4 e 100 50 50

With updated dataset:

  1. c &lt;- c(10, 20, 30, 40, 50)
  2. b &lt;- c(40, 2, 40, 10, 50)
  3. a &lt;- c(10, 50, 0.0000891, 60, 100)
  4. id &lt;- c(&quot;a&quot;, &quot;b&quot;, &quot;c&quot;, &quot;d&quot;, &quot;e&quot;)
  5. data &lt;- data.frame(id, a, b, c)
  6. data |&gt;
  7. filter(a &gt; b | a &gt; c)
  8. #&gt; id a b c
  9. #&gt; 1 b 50 2 20
  10. #&gt; 2 d 60 10 40
  11. #&gt; 3 e 100 50 50

<sup>Created on 2023-06-19 with reprex v2.0.2</sup>

huangapple
  • 本文由 发表于 2023年6月19日 15:04:37
  • 转载请务必保留本文链接:https://go.coder-hub.com/76504324.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定