Python Pandas hypostesis: average rating for the "expensive" books. Need some help understatding the basic features of pandas

huangapple go评论72阅读模式
英文:

Python Pandas hypostesis: average rating for the "expensive" books. Need some help understatding the basic features of pandas

问题

我现在正在学习pandas,对于基本特性的理解存在问题。我正在探索这个数据集。有一个名为“Price (Above Average)”的变量,如果书的价格高于平均价格,则包含“Yes”,如果低于平均价格,则包含“No”。

我假设书的评分与其价格无关,并希望进行测试。现在我需要绘制每个组的平均用户评分的图表。

首先,我想打印“昂贵”书籍的平均评分,以弄清楚它的工作原理。我对语法还不太了解,所以希望得到您的帮助。

英文:

I'm studying pandas now and having issues in understanding of basic features. I'm exploring this data set. There's a variable "Price (Above Average)" that contains "Yes" if the price of the book is greater than the average, and "No" if it is less.

I assumed that a book's rating is independent of its price and want to test it. Now I need graphing the average user rating for each of the groups.

At first I want to print the average rating for the "expensive" books just to figure out how it works. I don't understand the syntax very well yet, so I'm hoping on your help.

答案1

得分: 0

打印书籍的平均评分:

df['average_rating_for_books'] = df.groupby(['Price (Above Average)'])['User Rating (Round)'].transform('mean')

之后,您可以筛选出价格较高的书籍。

要筛选出行,您可以编写一个类似的函数:

df[df['Price (Above Average)'] == 'Yes']
英文:

To print the average rating for the books:

df['average_rating_for_books'] = df.groupby(['Price (Above Average)'])['User Rating (Round)'].transform('mean')

After this, you can filter out books which are expensive.

To filter out rows, you can write a function like:

df[df['Price (Above Average)'] == 'Yes']

答案2

得分: 0

假设您的数据存储在名为df的数据框中:

df.groupby("Price (Above Average)").agg(avg_rating=("User Rating", "mean"))

groupby 函数会根据您传递的列中的不同值对数据进行分组,这里是根据 "Price (Above Average)" 列的不同值进行分组。

agg 函数会在 groupby 创建的分组上进行聚合操作。在这里,您正在使用 "User Rating" 列创建一个名为 "avg_rating" 的新列,并计算其平均值。

这将显示出“昂贵”书籍和其他书籍的平均评分。

英文:

Suppose your data is in df:

   df.groupby("Price (Above Average)").agg(avg_raiting=("User Rating", "mean"))

The groupby function groups your data by each of the different values in the column you pass, in this case, "Price (Above Average)".

The agg function aggregates a column over the groups created in the groupby. Here, you are creating a new column named avg_raiting using the column "User Rating", and calculating the "mean".

This will show you the average rating for the "expensive" books and others.

huangapple
  • 本文由 发表于 2023年6月19日 11:34:34
  • 转载请务必保留本文链接:https://go.coder-hub.com/76503471.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定