如何将复杂的Excel文档转换为C#模型

huangapple go评论83阅读模式
英文:

How to convert complex Excel document to C# models

问题

我遇到了一些问题,找不到将我的Excel电子表格转换为C#模型的理想方式。

我有一些使用EPPlus库的MVP代码,但它非常简单,只是打开文件并从左上到右下读取单元格中的内容。

我正在寻找关于最适合这种数据的模型结构的指导,我认为一旦我能够找到一种创建模型的方法,代码实现就应该很简单。

像这样的模型结构是否理想?

public class DataModel
{
    public Dictionary<string, Region> Regions { get; set; }
}

public class Region
{
    public Dictionary<string, Category> Categories { get; set; }
}

public class Category
{
    public Dictionary<string, Subcategory> Subcategories { get; set; }
}

public class Subcategory
{
    public decimal UK { get; set; }
    public decimal England { get; set; }
    public decimal NorthEast { get; set; }
    public decimal NorthWest { get; set; }
    ...
}

Excel文档大致如下:

| | | | |UK|England|North East|North West|Yorkshire and the Humber|East Midlands|West Midlands|East|London|South East|South West|Wales|Scotland|Northern Ireland|
|:----|:----|:----|:----|:----|:----|:----|:----|:----|:----|:----|:----|:----|:----|:----|:----|:----|
|1|Food & non-alcoholic drinks| | |60.30|60.80|55.20|56.40|54.40|61.20|58.00|62.20|65.80|66.20|61.00|56.10|57.00|63.80|
| | | | | | | | | | | | | | | | | | |
|1.1|Food| | |55.30|55.80|50.30|51.80|49.90|56.00|53.00|57.10|60.60|61.00|56.10|51.60|51.60|58.00|
| |1.1.1|Bread, rice and cereals| |5.40|5.40|4.90|5.10|4.90|5.50|5.40|5.40|5.90|5.80|5.20|5.00|5.20|5.90|
| |1.1.2|Pasta products| |0.40|0.40|0.40|0.40|0.40|0.40|0.40|0.40|0.50|0.50|0.40|0.40|0.50|0.50|
| |1.1.3|Buns, cakes, biscuits etc.| |3.80|3.80|3.70|3.60|3.30|4.00|3.80|3.90|3.90|4.10|4.10|3.50|3.70|4.60|
| |1.1.4|Pastry (savoury)| |0.90|0.90|0.90|0.90|0.90|1.00|0.80|1.00|0.90|1.00|0.90|0.90|0.90|0.90|
|1.2|Non-alcoholic drinks| | |5.00|5.00|4.90|4.50|4.40|5.20|5.00|5.10|5.30|5.20|4.80|4.50|5.50|5.80|
| |1.2.1|Coffee| |0.90|1.00|0.90|0.90|0.80|1.10|0.80|1.00|0.80|1.20|1.00|0.80|0.90|0.90|
| |1.2.2|Tea| |0.50|0.50|0.40|0.40|0.40|0.50|0.50|0.50|0.50|0.50|0.50|0.40|0.40|0.60|
| |1.2.3|Cocoa and powdered chocolate| |0.10|0.10|0.10|0.10|0.10|0.10|0.10|0.10|0.10|0.10|0.10|0.10|0.10|0.10|
| |1.2.4|Fruit and vegetable juices (inc. fruit squash)| |1.10|1.10|0.90|1.00|0.90|1.00|1.00|1.10|1.20|1.20|1.00|1.00|1.00|1.00|
| |1.2.5|Mineral or spring waters| |0.40|0.40|0.30|0.40|0.30|0.30|0.40|0.40|0.70|0.40|0.30|0.40|0.30|0.50|
| |1.2.6|Soft drinks (inc. fizzy and ready to drink fruit drinks)| |2.00|2.00|2.30|1.80|1.90|2.10|2.20|2.00|1.90|1.80|1.90|2.00|2.70|2.70|
| | | | | | | | | | | | | | | | | | |
|2|Alcoholic drink, tobacco & narcotics| | |12.50|12.30|12.90|13.60|11.90|13.60|11.60|12.20|10.90|12.50|12.40|12.00|14.00|14.70|
| | | | | | | | | | | | | | | | | | |
|2.1|Alcoholic drinks| | |8.70|8.80|8.20|9.50|8.30|9.30|8.20|8.90|7.90|9.10|9.10|8.10|8.50|7.70|
| |2.1.1|Spirits and liqueurs (brought home)| |2.00|1.90|2.20|1.90|1.50|2

英文:

I'm having some trouble finding the ideal way to convert my Excel spreadsheet to C# models.

I've got some MVP code that's using the EPPlus library, but it's really simple in that it only opens the file and reads what's in the cells from top-left to bottom-right.

I'm looking for some guidance on the model structure that would be best for this kind of data, I think the code implementation should be straightforward once I can figure out a way of doing the models.

Would a model structure of something like this be ideal?

public class DataModel
{
    public Dictionary<string, Region> Regions { get; set; }
}

public class Region
{
    public Dictionary<string, Category> Categories { get; set; }
}

public class Category
{
    public Dictionary<string, Subcategory> Subcategories { get; set; }
}

public class Subcategory
{
    public decimal UK { get; set; }
    public decimal England { get; set; }
    public decimal NorthEast { get; set; }
    public decimal NorthWest { get; set; }
    ...
}

The Excel document looks something like this:

UK England North East North West Yorkshire and the Humber East Midlands West Midlands East London South East South West Wales Scotland Northern Ireland
1 Food & non-alcoholic drinks 60.30 60.80 55.20 56.40 54.40 61.20 58.00 62.20 65.80 66.20 61.00 56.10 57.00 63.80
1.1 Food 55.30 55.80 50.30 51.80 49.90 56.00 53.00 57.10 60.60 61.00 56.10 51.60 51.60 58.00
1.1.1 Bread, rice and cereals 5.40 5.40 4.90 5.10 4.90 5.50 5.40 5.40 5.90 5.80 5.20 5.00 5.20 5.90
1.1.2 Pasta products 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.50 0.50 0.40 0.40 0.50 0.50
1.1.3 Buns, cakes, biscuits etc. 3.80 3.80 3.70 3.60 3.30 4.00 3.80 3.90 3.90 4.10 4.10 3.50 3.70 4.60
1.1.4 Pastry (savoury) 0.90 0.90 0.90 0.90 0.90 1.00 0.80 1.00 0.90 1.00 0.90 0.90 0.90 0.90
1.2 Non-alcoholic drinks 5.00 5.00 4.90 4.50 4.40 5.20 5.00 5.10 5.30 5.20 4.80 4.50 5.50 5.80
1.2.1 Coffee 0.90 1.00 0.90 0.90 0.80 1.10 0.80 1.00 0.80 1.20 1.00 0.80 0.90 0.90
1.2.2 Tea 0.50 0.50 0.40 0.40 0.40 0.50 0.50 0.50 0.50 0.50 0.50 0.40 0.40 0.60
1.2.3 Cocoa and powdered chocolate 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
1.2.4 Fruit and vegetable juices (inc. fruit squash) 1.10 1.10 0.90 1.00 0.90 1.00 1.00 1.10 1.20 1.20 1.00 1.00 1.00 1.00
1.2.5 Mineral or spring waters 0.40 0.40 0.30 0.40 0.30 0.30 0.40 0.40 0.70 0.40 0.30 0.40 0.30 0.50
1.2.6 Soft drinks (inc. fizzy and ready to drink fruit drinks) 2.00 2.00 2.30 1.80 1.90 2.10 2.20 2.00 1.90 1.80 1.90 2.00 2.70 2.70
2 Alcoholic drink, tobacco & narcotics 12.50 12.30 12.90 13.60 11.90 13.60 11.60 12.20 10.90 12.50 12.40 12.00 14.00 14.70
2.1 Alcoholic drinks 8.70 8.80 8.20 9.50 8.30 9.30 8.20 8.90 7.90 9.10 9.10 8.10 8.50 7.70
2.1.1 Spirits and liqueurs (brought home) 2.00 1.90 2.20 1.90 1.50 2.30 1.90 2.10 1.60 1.80 1.90 2.00 2.50 2.00
2.1.2 Wines, fortified wines (brought home) 4.40 4.50 3.60 4.80 4.30 4.40 4.00 4.50 4.30 5.00 4.80 3.90 3.90 3.60
2.1.3 Beer, lager, ciders and perry (brought home) 2.30 2.30 2.30 2.80 2.50 2.60 2.30 2.20 2.00 2.20 2.40 2.20 2.00 2.00
2.1.4 Alcopops (brought home) 0.00~ 0.00~ [0.00~] [0.00~] [0.00~] [0.00~] 0.00~ [0.00~] .. 0.00~ [0.00~] .. 0.00~ 0.00~
2.2 Tobacco and narcotics 3.80 3.50 4.70 4.00 3.60 4.30 3.50 3.30 3.00 3.40 3.30 3.90 5.50 7.00
2.2.1 Cigarettes 2.70 2.50 3.50 3.00 2.50 2.80 2.50 2.20 2.20 2.50 1.90 2.40 4.30 5.90
2.2.2 Cigars, other tobacco products and narcotics 1.10 1.10 1.20 1.00 1.10 1.50 0.90 1.10 0.70 0.90 1.40 1.50 1.20 1.10

答案1

得分: 1

模型设计在很大程度上取决于您将如何访问和进一步处理您的数据,所以很难说什么是适合您提供的数据集的合适数据模型。

从我的角度来看,您可以在这种情况下创建一个类似树形结构的模型:

public class Node
{
    public Node ParentNode { get; set; }
    public Dictionary<string, double> Values { get; set; }
    public string Name { get; set; }
    public string NodeAlternativeData { get; set; }
}

示例构建:

var rootNode = new Node()
{
    Name = "食品与非酒精饮料",
    Values = new Dictionary<string, double>()
    {
        {"英国", 1}, {"英格兰", 2}
    },
    ParentNode = null,
    NodeAlternativeData = "1"
};

var foodNode = new Node()
{
    Name = "食品",
    Values = new Dictionary<string, double>()
    {
        {"英国", 1}, {"英格兰", 2}
    },
    ParentNode = rootNode,
    NodeAlternativeData = "1.1"
};

var drinkNode = new Node()
{
    Name = "饮料",
    Values = new Dictionary<string, double>()
    {
        {"英国", 1}, {"英格兰", 2}
    },
    ParentNode = rootNode,
    NodeAlternativeData = "1.2"
};
英文:

The model design is largely dependent on the way you will be accessing and doing further processing with your data so its hard to say what is the suitable data model for the dataset you provided.

From my perspective though, you can create a Tree-like structure in this case

public class Node
{
    public Node ParentNode { get; set; }
    public Dictionary&lt;string, double&gt; Values { get; set; }
    public string Name { get; set; }
    public string NodeAlternativeData { get; set; }
}

Example construction

var rootNode = new Node()
{
    Name = &quot;Food &amp; non-alcoholic drinks&quot;,
    Values = new Dictionary&lt;string, double&gt;()
    {
        {&quot;UK&quot;,1}, {&quot;England&quot;, 2}
    },
    ParentNode = null,
    NodeAlternativeData = &quot;1&quot;
};

var foodNode = new Node()
{
    Name = &quot;Food&quot;,
    Values = new Dictionary&lt;string, double&gt;()
    {
        {&quot;UK&quot;,1}, {&quot;England&quot;, 2}
    },
    ParentNode = rootNode,
    NodeAlternativeData = &quot;1.1&quot;
};

var drinkNode = new Node()
{
    Name = &quot;Drink&quot;,
    Values = new Dictionary&lt;string, double&gt;()
    {
        {&quot;UK&quot;,1}, {&quot;England&quot;, 2}
    },
    ParentNode = rootNode,
    NodeAlternativeData = &quot;1.2&quot;
};

huangapple
  • 本文由 发表于 2023年6月15日 06:01:54
  • 转载请务必保留本文链接:https://go.coder-hub.com/76477862.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定