pandas按一列分组,除非另一列有不同的条目。

huangapple go评论109阅读模式
英文:

pandas groupby one column except if one other column has different entry

问题

我想要根据给定的列对数据框进行分组,但仅当另一列也相同时,并对另一列进行求和。给定这个示例:

  1. test=pd.DataFrame({'A':['0','0','0','1'],'B':['AAA','AAA','BBB','CCC'],'C':[0.5,0.2,0.3,0.1]})

我想要对A进行分组,但只有当B不同时才进行分组。我想要的结果如下:

  1. A B C
  2. 0 0 AAA 0.7
  3. 1 0 BBB 0.3
  4. 2 1 CCC 0.1

到目前为止,我还没有找到任何方法来实现这个。

英文:

I have a dataframe that I would like to group by a given column, BUT only if one other column is also the same, while doing a sum on an other column. Given this example:

  1. test=pd.DataFrame({'A':['0','0','0','1'],'B':['AAA','AAA','BBB','CCC'],'C':[0.5,0.2,0.3,0.1]})
  2. A B C
  3. 0 0 AAA 0.5
  4. 1 0 AAA 0.2
  5. 2 0 BBB 0.3
  6. 3 1 CCC 0.1

I would like group for A only if B is different. I am targeting following dataframe:

  1. A B C
  2. 0 0 AAA 0.7
  3. 1 0 BBB 0.3
  4. 2 1 CCC 0.1

So far I did not find any way to do it

答案1

得分: 1

  1. test=pd.DataFrame({'A':['0','0','0','1'],'B':['AAA','AAA','BBB','CCC'],'C':[0.5,0.2,0.3,0.1]})
  2. test.groupby(['A','B'])['C'].sum()
  3. A B
  4. 0 AAA 0.7
  5. BBB 0.3
  6. 1 CCC 0.1
  7. Name: C, dtype: float64
  1. test.groupby(['A','B'], as_index=False)['C'].sum()
  2. A B C
  3. 0 0 AAA 0.7
  4. 1 0 BBB 0.3
  5. 2 1 CCC 0.1
英文:
  1. test=pd.DataFrame({'A':['0','0','0','1'],'B':['AAA','AAA','BBB','CCC'],'C':[0.5,0.2,0.3,0.1]})
  2. test.groupby(['A','B'])['C'].sum()
  3. A B
  4. 0 AAA 0.7
  5. BBB 0.3
  6. 1 CCC 0.1
  7. Name: C, dtype: float64

  1. test.groupby(['A','B'], as_index=False)['C'].sum()
  2. A B C
  3. 0 0 AAA 0.7
  4. 1 0 BBB 0.3
  5. 2 1 CCC 0.1

huangapple
  • 本文由 发表于 2023年6月15日 04:05:40
  • 转载请务必保留本文链接:https://go.coder-hub.com/76477181.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定