将Fama-French因子转换为季度而非月度收益的方式

huangapple go评论79阅读模式
英文:

Way of turning Fama-French factors into quarterly in stead of monthly returns

问题

我正在尝试创建季度的Fama French因子。我使用getFamaFrenchFactors包下载了月度因子数据,但我不知道如何将它们转换为季度数据点。

我尝试过使用cumsum对它们进行累加,但在最后创建了非常大的因子。以下是我的代码:

import getFamaFrenchFactors as gff

df_ff3_monthly = gff.famaFrench3Factor(frequency='m')
df_ff3_monthly['date_ff_factors'] = pd.to_datetime(df_ff3_monthly['date_ff_factors'])
df_ff3_monthly = df_ff3_monthly[df_ff3_monthly['date_ff_factors'] > '2020-12-31']
df_ff3_monthly.set_index('date_ff_factors', inplace=True)
df_ff3_quarterly = df_ff3_monthly.resample('Q').sum().cumsum()
df_ff3_quarterly
英文:

I am trying to create quarterly Fama French factors. I used the getFamaFrenchFactors package to download the factors monthly, but I have no idea how I can turn them into quarterly data points.

I tried to cumsum them, but it created very large factors at the end. This is my code:

import getFamaFrenchFactors as gff

df_ff3_monthly = gff.famaFrench3Factor(frequency='m') 
df_ff3_monthly['date_ff_factors'] = pd.to_datetime(df_ff3_monthly['date_ff_factors'])
df_ff3_monthly = df_ff3_monthly[df_ff3_monthly['date_ff_factors'] > '31-12-2020']
df_ff3_monthly.set_index('date_ff_factors', inplace=True)
df_ff3_quarterly = df_ff3_monthly.resample('Q').sum().cumsum()
df_ff3_quarterly

答案1

得分: 1

你可以计算累积收益率,然后转换为季度数据:

df_quarterly = df_ff3_monthly.add(1).cumprod().resample("Q").last().pct_change()

#Out[]: 
#                   Mkt-RF       SMB       HML        RF
#date_ff_factors                                        
#2021-03-31            NaN       NaN       NaN       NaN
#2021-06-30       0.081282 -0.018005 -0.022328  0.000000
#2021-09-30      -0.003373 -0.037145  0.030646  0.000000
#2021-12-31       0.082518 -0.052192  0.022916  0.000100
#2022-03-31      -0.056030 -0.053894  0.141307  0.000100
#2022-06-30      -0.173744 -0.011717  0.081960  0.001000
#2022-09-30      -0.044194  0.033851 -0.037546  0.004607
#2022-12-31       0.055603 -0.039705  0.109870  0.008524
#2023-03-31       0.065063  0.003491 -0.133761  0.010537
#2023-06-30       0.006100 -0.033400 -0.000300  0.003500
英文:

You can calculate the cumulative returns, then back to quarterly:

df_quarterly = df_ff3_monthly.add(1).cumprod().resample("Q").last().pct_change()

#Out[]: 
#                   Mkt-RF       SMB       HML        RF
#date_ff_factors                                        
#2021-03-31            NaN       NaN       NaN       NaN
#2021-06-30       0.081282 -0.018005 -0.022328  0.000000
#2021-09-30      -0.003373 -0.037145  0.030646  0.000000
#2021-12-31       0.082518 -0.052192  0.022916  0.000100
#2022-03-31      -0.056030 -0.053894  0.141307  0.000100
#2022-06-30      -0.173744 -0.011717  0.081960  0.001000
#2022-09-30      -0.044194  0.033851 -0.037546  0.004607
#2022-12-31       0.055603 -0.039705  0.109870  0.008524
#2023-03-31       0.065063  0.003491 -0.133761  0.010537
#2023-06-30       0.006100 -0.033400 -0.000300  0.003500

huangapple
  • 本文由 发表于 2023年6月15日 03:58:06
  • 转载请务必保留本文链接:https://go.coder-hub.com/76477139.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定