如何展示随着数据增加而稀疏的矩阵

huangapple go评论94阅读模式
英文:

how to show sparse matrix with increasing data

问题

如何使稀疏矩阵以值部分递增的方式显示?我认为默认情况下,列部分是递增的。

英文:

how can we have the sparse matrix to be displayed in a way that the value part of a sparse matrix is increasing? I think by default, column part is increasing.

答案1

得分: 1

一个直观的方法是使用 sorted(zip()) 方法通过值来“手动”对列/行索引进行排序:

  1. from scipy.sparse import csr_matrix
  2. m = csr_matrix([[0, 0, 7], [2, 0, 0], [0, 5, 0]])
  3. print("As returned by csr:")
  4. print(m)
  5. print("Sorted by value:")
  6. for d, r, c in sorted(zip(m.data, m.tocoo().row, m.tocoo().col)):
  7. print(f" ({r}, {c})\t{d}")

这将得到以下结果:

  1. As returned by csr:
  2. (0, 2) 7
  3. (1, 0) 2
  4. (2, 1) 5
  5. Sorted by value:
  6. (1, 0) 2
  7. (2, 1) 5
  8. (0, 2) 7
英文:

A straight-forward approach would be to "manually" sort the col/row indices by the value, using a sorted(zip()) approach:

  1. from scipy.sparse import csr_matrix
  2. m = csr_matrix([[0, 0, 7], [2, 0, 0], [0, 5, 0]])
  3. print("As returned by csr:")
  4. print(m)
  5. print("Sorted by value:")
  6. for d, r, c in sorted(zip(m.data, m.tocoo().row, m.tocoo().col)):
  7. print(f" ({r}, {c})\t{d}")

which gives the following result:

  1. As returned by csr:
  2. (0, 2) 7
  3. (1, 0) 2
  4. (2, 1) 5
  5. Sorted by value:
  6. (1, 0) 2
  7. (2, 1) 5
  8. (0, 2) 7

答案2

得分: 1

这是关于对data进行排序并以相同顺序显示坐标的基本方法的变体:

首先,创建一个带有整数值的示例随机矩阵(便于显示)。我使用coo格式,因为它显示了数据和坐标之间的最简单关系。

  1. M = (sparse.random(10, 10, 0.1, 'coo') * 10).astype(int)

ipython中,基本显示是repr版本,而print显示str版本。

现在获取数据的排序顺序:

  1. idx = np.argsort(M.data)

然后创建一个新的矩阵,其中行和列以相同的顺序排列:

  1. M1 = sparse.coo_matrix((M.data[idx], (M.row[idx], M.col[idx])), shape=M.shape)

这是相同的矩阵,但data数组已排序。

  1. M1.A

coo格式转换为csr格式需要排序(按行和列的词法顺序),因此两个coo矩阵以相同的方式转换:

  1. M.tocsr().data

csr格式的规范顺序按行和列排序:

  1. print(M1.tocsr())
英文:

Here's a variation on the basic approach of sorting the data, and displaying the coordinates in the same order

First make a sample random matrix with integer values (for ease of display). I'm using coo format because that's the one that shows the simplest relation between data and coordinates.

  1. In [9]: M = (sparse.random(10,10,.1, 'coo')*10).astype(int)
  2. In [10]: M
  3. Out[10]:
  4. <10x10 sparse matrix of type '<class 'numpy.int32'>'
  5. with 10 stored elements in COOrdinate format>
  6. In [11]: print(M)
  7. (1, 3) 1
  8. (3, 4) 7
  9. (5, 4) 1
  10. (7, 4) 8
  11. (5, 6) 9
  12. (6, 6) 7
  13. (5, 8) 4
  14. (6, 8) 1
  15. (4, 9) 5
  16. (9, 9) 1

In ipython, the basic display is the repr version, while print shows the str version.

Now get the sort order of the data:

  1. In [12]: idx = np.argsort(M.data)

and make a new matrix with row and column in the same order:

  1. In [13]: M1 = sparse.coo_matrix((M.data[idx],(M.row[idx], M.col[idx])),shape=M.shape)
  2. In [14]: M1
  3. Out[14]:
  4. <10x10 sparse matrix of type '<class 'numpy.int32'>'
  5. with 10 stored elements in COOrdinate format>
  6. In [15]: print(M1)
  7. (1, 3) 1
  8. (5, 4) 1
  9. (6, 8) 1
  10. (9, 9) 1
  11. (5, 8) 4
  12. (4, 9) 5
  13. (3, 4) 7
  14. (6, 6) 7
  15. (7, 4) 8
  16. (5, 6) 9

It's the same matrix, but the data array is sorted

  1. In [16]: M.A
  2. Out[16]:
  3. array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
  4. [0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
  5. [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
  6. [0, 0, 0, 0, 7, 0, 0, 0, 0, 0],
  7. [0, 0, 0, 0, 0, 0, 0, 0, 0, 5],
  8. [0, 0, 0, 0, 1, 0, 9, 0, 4, 0],
  9. [0, 0, 0, 0, 0, 0, 7, 0, 1, 0],
  10. [0, 0, 0, 0, 8, 0, 0, 0, 0, 0],
  11. [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
  12. [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])
  13. In [17]: M1.A
  14. Out[17]:
  15. array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
  16. [0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
  17. [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
  18. [0, 0, 0, 0, 7, 0, 0, 0, 0, 0],
  19. [0, 0, 0, 0, 0, 0, 0, 0, 0, 5],
  20. [0, 0, 0, 0, 1, 0, 9, 0, 4, 0],
  21. [0, 0, 0, 0, 0, 0, 7, 0, 1, 0],
  22. [0, 0, 0, 0, 8, 0, 0, 0, 0, 0],
  23. [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
  24. [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])
  25. In [18]: M1.data
  26. Out[18]: array([1, 1, 1, 1, 4, 5, 7, 7, 8, 9])

Converting the coo to csr format requires sorting (lexical for row and col), so both coo matrices are converted in the same way:

  1. In [19]: M.tocsr().data
  2. Out[19]: array([1, 7, 5, 1, 9, 4, 7, 1, 8, 1], dtype=int32)
  3. In [20]: M1.tocsr().data
  4. Out[20]: array([1, 7, 5, 1, 9, 4, 7, 1, 8, 1], dtype=int32)

The cannonical csr order by rows and columns within those:

  1. In [23]: print(M1.tocsr())
  2. (1, 3) 1
  3. (3, 4) 7
  4. (4, 9) 5
  5. (5, 4) 1
  6. (5, 6) 9
  7. (5, 8) 4
  8. (6, 6) 7
  9. (6, 8) 1
  10. (7, 4) 8
  11. (9, 9) 1

huangapple
  • 本文由 发表于 2023年6月13日 14:51:15
  • 转载请务必保留本文链接:https://go.coder-hub.com/76462308.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定