英文:
LMM Fine Tuning - Supervised Fine Tuning Trainer (SFTTrainer) vs transformers Trainer
问题
何时应选择监督微调训练器(SFTTrainer)而不是常规的Transformers训练器,当涉及到对语言模型(LLMs)进行指令微调时?根据我的了解,常规的Transformers训练器通常指的是无监督微调,通常用于在进行监督微调后执行输入输出模式格式化等任务。似乎有各种各样的微调任务具有类似的特性,但有些使用SFTTrainer,而其他使用常规训练器。在选择这两种方法之间应考虑哪些因素?
我正在寻找使用huggingface和trl库微调LLM以生成json到json转换(匹配json中的文本)。
英文:
When should one opt for the Supervised Fine Tuning Trainer (SFTTrainer) instead of the regular Transformers Trainer when it comes to instruction fine-tuning for Language Models (LLMs)? From what I gather, the regular Transformers Trainer typically refers to unsupervised fine-tuning, often utilized for tasks such as Input-Output schema formatting after conducting supervised fine-tuning. There seem to be various examples of fine-tuning tasks with similar characteristics, but with some employing the SFTTrainer and others using the regular Trainer. Which factors should be considered in choosing between the two approaches?
I looking for Fine Tuning a LLM for generating json to json transformation (matching texts in json) using huggingface and trl libraries.
答案1
得分: 0
same as Trainer but accepts a peft config so it can run lora fine-tuning.
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论