LMM Fine Tuning – Supervised Fine Tuning Trainer (SFTTrainer) vs transformers Trainer

huangapple go评论87阅读模式
英文:

LMM Fine Tuning - Supervised Fine Tuning Trainer (SFTTrainer) vs transformers Trainer

问题

何时应选择监督微调训练器(SFTTrainer)而不是常规的Transformers训练器,当涉及到对语言模型(LLMs)进行指令微调时?根据我的了解,常规的Transformers训练器通常指的是无监督微调,通常用于在进行监督微调后执行输入输出模式格式化等任务。似乎有各种各样的微调任务具有类似的特性,但有些使用SFTTrainer,而其他使用常规训练器。在选择这两种方法之间应考虑哪些因素?

我正在寻找使用huggingface和trl库微调LLM以生成json到json转换(匹配json中的文本)。

英文:

When should one opt for the Supervised Fine Tuning Trainer (SFTTrainer) instead of the regular Transformers Trainer when it comes to instruction fine-tuning for Language Models (LLMs)? From what I gather, the regular Transformers Trainer typically refers to unsupervised fine-tuning, often utilized for tasks such as Input-Output schema formatting after conducting supervised fine-tuning. There seem to be various examples of fine-tuning tasks with similar characteristics, but with some employing the SFTTrainer and others using the regular Trainer. Which factors should be considered in choosing between the two approaches?

I looking for Fine Tuning a LLM for generating json to json transformation (matching texts in json) using huggingface and trl libraries.

答案1

得分: 0

same as Trainer but accepts a peft config so it can run lora fine-tuning.

英文:

same as Trainer but accepts a peft config so it can run lora fine-tuning.

huangapple
  • 本文由 发表于 2023年6月13日 13:15:06
  • 转载请务必保留本文链接:https://go.coder-hub.com/76461859.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定