Space在命名实体识别(NER)中使用哪种损失函数?

huangapple go评论48阅读模式
英文:

What loss function does Space use for Named Entity Recognition (NER)

问题

我对了解 Space 库在命名实体识别(NER)训练模型中使用的具体损失函数感兴趣。Space 是否为NER任务推荐标准损失函数?是否推荐针对特定NER情景的替代损失函数?我还想知道这个损失函数是否可定制,以及在 Space 库中是如何实现的。

非常感谢您提供如此详细的回答。我真的很感激您的帮助!

英文:

I'm interested in understanding the specific loss function used by the Space library for training models in the context of Named Entity Recognition. Is there a standard loss function recommended by Space for NER tasks? Are there any alternative loss functions recommended for specific NER scenarios? I would also like to know if the loss function is customizable and how it is implemented within the Space library.
.
.
.
.
Thank you for providing such a detailed response. I really appreciate your help!

答案1

得分: 0

答案比你预期的要复杂一些,因为spaCy使用了基于转移的NER模型,并带有模拟学习目标。算法的最佳描述在这个视频中,尤其是结构化预测部分:https://www.youtube.com/watch?v=sqDHBH9IjRU

用于在不同动作之间做出决策的实际损失函数也有些棘手。实现在这里:https://github.com/explosion/spaCy/blob/0367f864fe90dfa1dcdd0bfaf8f06dbcd5e97e45/spacy/syntax/_parser_model.pyx#L153

我相信我在其他评论中也描述过这个,但我不能立即找到它。基本上可能会有几种同样好的转移方式,我们希望目标函数能考虑到这一点。关于此的方程式在这里第4节有描述:https://aclanthology.org/P05-1022.pdf

英文:

The answer to this is more complicated than you might expect, because spaCy uses a transition-based NER model with an imitation learning objective. The best description of the algorithm is this video, especially the structured prediction part: https://www.youtube.com/watch?v=sqDHBH9IjRU

The actual loss function used to decide between the different actions is also a bit tricky. The implementation is here: https://github.com/explosion/spaCy/blob/0367f864fe90dfa1dcdd0bfaf8f06dbcd5e97e45/spacy/syntax/_parser_model.pyx#L153

I'm sure I've described this in other comments but I can't immediately find it. Basically there may be several equally good transitions, and we want the objective function to account for that. The equations for this are described in Section 4 here: https://aclanthology.org/P05-1022.pdf

huangapple
  • 本文由 发表于 2023年6月12日 02:03:10
  • 转载请务必保留本文链接:https://go.coder-hub.com/76451819.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定