如何使用Python pandas中的df.groupby()为每个组添加标签?

huangapple go评论95阅读模式
英文:

How to label each group with df.groupby() in Python pandas?

问题

考虑到我们有一个如下所示的pandas数据框:

   Questions  cnt similarity
0       ABC    1  [1, 2, 3]
1       abc    2  [1, 2, 3]
2       cba    3  [2, 3, 1]
3      abcd    4  [4, 5, 6]
4      dcsa    5  [2, 3, 1]
5      adcd    6  [4, 5, 6]
6      abcd    7  [1, 2, 3]
7       cba    8  [7, 8, 9]

我必须根据similarity列添加另一列cat。如果两行具有相同的similarity,则将它们归类为同一组。以下是预期输出。任何输入都是有价值的。值得一提的是,原始数据集有1M行。谢谢。

  Questions  cnt similarity  cat
0       ABC    1  [1, 2, 3]    1
1       abc    2  [1, 2, 3]    1
2       cba    3  [2, 3, 1]    2
3      abcd    4  [4, 5, 6]    3
4      dcsa    5  [2, 3, 1]    2
5      adcd    6  [4, 5, 6]    3
6      abcd    7  [1, 2, 3]    1
7       cba    8  [7, 8, 9]    4

英文:

Note: this question can be associated with one existing question here. However, my question provides a more concrete example and has broader impact.

Consider we have a pandas data frame as following:

   Questions  cnt similarity
0       ABC    1  [1, 2, 3]
1       abc    2  [1, 2, 3]
2       cba    3  [2, 3, 1]
3      abcd    4  [4, 5, 6]
4      dcsa    5  [2, 3, 1]
5      adcd    6  [4, 5, 6]
6      abcd    7  [1, 2, 3]
7       cba    8  [7, 8, 9]

I have to add another column called cat based on the similarity column. If two rows have the same similarity, then categorize them as the same group. Below is the expected output. Any input is valuable. It is worth mentioning that the original dataset has 1M rows. Thank you.

  Questions  cnt similarity  cat
0       ABC    1  [1, 2, 3]    1
1       abc    2  [1, 2, 3]    1
2       cba    3  [2, 3, 1]    2
3      abcd    4  [4, 5, 6]    3
4      dcsa    5  [2, 3, 1]    2
5      adcd    6  [4, 5, 6]    3
6      abcd    7  [1, 2, 3]    1
7       cba    8  [7, 8, 9]    4

答案1

得分: 3

IIUC,您可以使用 pd.factorize

df["cat"] = pd.factorize(df["similarity"].astype(str))[0] + 1


输出:

print(df)

  Questions  cnt similarity  cat
0       ABC    1  [1, 2, 3]    1
1       abc    2  [1, 2, 3]    1
2       cba    3  [2, 3, 1]    2
3      abcd    4  [4, 5, 6]    3
4      dcsa    5  [2, 3, 1]    2
5      adcd    6  [4, 5, 6]    3
6      abcd    7  [1, 2, 3]    1
7       cba    8  [7, 8, 9]    4
英文:

IIUC, you can use pd.factorize :

df["cat"] = pd.factorize(df["similarity"].astype(str))[0] + 1


Output :

print(df)

  Questions  cnt similarity  cat
0       ABC    1  [1, 2, 3]    1
1       abc    2  [1, 2, 3]    1
2       cba    3  [2, 3, 1]    2
3      abcd    4  [4, 5, 6]    3
4      dcsa    5  [2, 3, 1]    2
5      adcd    6  [4, 5, 6]    3
6      abcd    7  [1, 2, 3]    1
7       cba    8  [7, 8, 9]    4

答案2

得分: 2

One way is to use groupby.ngroup():

df['cat'] = df.groupby('similarity').ngroup() + 1
  Questions  cnt similarity  cat
0       ABC    1  [1, 2, 3]    1
1       abc    2  [1, 2, 3]    1
2       cba    3  [2, 3, 1]    2
3      abcd    4  [4, 5, 6]    3
4      dcsa    5  [2, 3, 1]    2
5      adcd    6  [4, 5, 6]    3
6      abcd    7  [1, 2, 3]    1
7       cba    8  [7, 8, 9]    4
英文:

One way is to use groupby.ngroup():

df['cat'] = df.groupby('similarity').ngroup()+1
  Questions  cnt similarity  cat
0       ABC    1  [1, 2, 3]    1
1       abc    2  [1, 2, 3]    1
2       cba    3  [2, 3, 1]    2
3      abcd    4  [4, 5, 6]    3
4      dcsa    5  [2, 3, 1]    2
5      adcd    6  [4, 5, 6]    3
6      abcd    7  [1, 2, 3]    1
7       cba    8  [7, 8, 9]    4

huangapple
  • 本文由 发表于 2023年6月9日 08:30:17
  • 转载请务必保留本文链接:https://go.coder-hub.com/76436489.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定