将数据网格化到边界的边缘

huangapple go评论64阅读模式
英文:

Gridding data to edge of bounds

问题

我有一些mesonet站点的散点数据,想要为特定变量生成地图。我首先想要对数据进行网格化并将其存储在NetCDF中以便重复访问。我正在使用metpy来生成经纬度/变量的网格:

interpolate_to_grid(X, Y, Z, interp_type="natural_neighbor", hres=0.125, boundary_coords={'west': -120., 'south': 33., 'east': -90., 'north': 53.})

该变量的散点数据未覆盖整个州(示例在爱荷华州),图像中显示了空洞。

当我从网格化的数据生成图像时,它不会插值到边缘。

是否有办法让metpy.interpolate_to_grid将数据网格化到边缘?

英文:

I have some scatter data of mesonet stations and I want to generate maps for a specific variable. I first want to grid the data and store it in a NetCDF for repeated access. I'm using metpy to generate the grids for the lat/lon/variable:

interpolate_to_grid(X, Y, Z, interp_type="natural_neighbor", hres=0.125, boundary_coords={'west': -120., 'south': 33., 'east': -90., 'north': 53.})

The scatter data for this variable does not cover the whole state (the example is in Iowa), there are holes shown in the image below.

将数据网格化到边界的边缘

When I generate an image from the gridded data It does not interpolate to the edge.

将数据网格化到边界的边缘

Is there a way to get metpy.interpolate_to_grid to grid the data to the edge of the bounds?

答案1

得分: 0

不使用自然邻近插值。您所看到的区域是您的数据所知的“凸包”。基本上,要对网格点进行插值,该点需要被数据“包围”。其他方法,如线性插值或距离加权方法,将为您提供不同的有效数据界限。

英文:

Not with natural neighbor interpolation. The area you see is what's known as the "convex hull" of your data. Essentially, to interpolate to a grid point, that point needs to be "surrounded" by data. Other methods, like the linear interpolation, or the distance-weighting methods, will give you a different bound of valid data.

huangapple
  • 本文由 发表于 2023年6月8日 03:45:47
  • 转载请务必保留本文链接:https://go.coder-hub.com/76426658.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定