英文:
nearest neighbour join between two sfc_LINESTRING objects
问题
我有两个相邻的区域,每个区域上都有一个连接的网格,每个网格都采用sfc_LINESTRING
的结构。一个区域较大,具有较粗的网格,另一个区域较小,具有较细的网格。
我希望能够进行连接,以便来自较大网格的至少一个点与来自较小网格的至少一个点相连接。总体目标是能够在两个采样区域的所有节点上创建一个网络,以便使用sfnetworks
进行网络分析。
有没有一种简便的方法可以实现这一点?我无法让st_join
或merge
在这些对象上正常工作。
以下是一些代码示例:
英文:
I have two adjacent areas, on which I have a connected grid that each take the structure of sfc_LINESTRING
. One area is larger and has a coarser grid, and the other is smaller with a finer grid.
I want to be able to do a join so at least one of the points from the larger grid is connected to at least one of the points from the smaller grids. The overall goal is to be able to have a connection between the two grids so I can use sfnetworks
to make a network that includes all the nodes from both sampled areas.
Is there an easy way to go about doing this? I couldn't get st_join
or merge
to work on these objects.
here's some code:
library(sf)
library(nngeo)
nc = st_read(system.file("shape/nc.shp", package="sf"))
nc_utm = st_transform(nc, crs="+proj=utm +zone=18 +datum=NAD83 +unit=m") # using UTM
# crop the area to two smaller areas for sampling the grids
area_1 <- st_crop(nc_utm, xmin = 0, xmax = 20000,
ymin = 3950000, ymax = 4000000)
area_2 <- st_crop(nc_utm, xmin = 20100, xmax = 25000,
ymin = 3960000, ymax = 3980000)
# sample the grids and connect each
grid_1 <- sf::st_sample(
area_1, size = 25, type = 'regular') %>%
sf::st_as_sf() %>%
nngeo::st_connect(.,.,k = 9)
grid_2 <- sf::st_sample(
area_2, size = 25, type = 'regular') %>%
sf::st_as_sf() %>%
nngeo::st_connect(.,.,k = 9)
# plot it
ggplot() +
geom_sf(data = nc_utm) +
geom_sf(data = area_1, fill = 'blue', alpha = 0.3) +
geom_sf(data = area_2, fill = "red", alpha = 0.3) +
geom_sf(data = grid_1, colour = "blue") +
geom_sf(data = grid_2, colour = "red") +
coord_sf(datum = "+proj=utm +zone=18 +datum=NAD83 +unit=m",
xlim = c(-10000, 30000), ylim = c(3940000, 4001000))
答案1
得分: 1
@mrhellman 提供了解决方法,st_connect(st_combine(grid_1), st_combine(gird_2))
返回一个连接上述两个栅格的单个线串。
以下是演示它如何与附加区域一起工作以显示其可扩展性的方式:
grid_3 <- sf::st_sample(
area_3, size = 25, type = 'regular') %>%
sf::st_as_sf() %>%
nngeo::st_connect(.,.,k = 9)
grid_connect <- nngeo::st_connect(st_combine(grid_1), st_combine(grid_2))
grid_connect2 <- nngeo::st_connect(st_combine(grid_1), st_combine(grid_3))
all_grids <- c(grid_1, grid_2, grid_3, grid_connect, grid_connect2)
可以将其可视化为单个栅格:
ggplot() +
geom_sf(data = nc_utm) +
geom_sf(data = area_1, fill = 'blue', alpha = 0.3) +
geom_sf(data = area_2, fill = 'red', alpha = 0.3) +
geom_sf(data = area_3, fill = 'yellow', alpha = 0.3) +
geom_sf(data = grid_1, colour = 'blue') +
geom_sf(data = grid_2, colour = 'red') +
geom_sf(data = all_grids, colour = 'purple', size = 2) +
coord_sf(datum = '+proj=utm +zone=18 +datum=NAD83 +unit=m',
xlim = c(-10000, 30000), ylim = c(3940000, 4001000))
[![在此输入图片描述][1]][1]
<details>
<summary>英文:</summary>
@mrhellman gave the tip that solved this for me. `st_connect(st_combine(grid_1), st_combine(gird_2))` returns a single linestring that connects the two grids above.
Here's how it works with an additional area to show that it scales:
grid_3 <- sf::st_sample(
area_3, size = 25, type = 'regular') %>%
sf::st_as_sf() %>%
nngeo::st_connect(.,.,k = 9)
grid_connect <- nngeo::st_connect(st_combine(grid_1), st_combine(grid_2))
grid_connect2 <- nngeo::st_connect(st_combine(grid_1), st_combine(grid_3))
all_grids <- c(grid_1, grid_2, grid_3, grid_connect, grid_connect2)
And can be visualized as one single grid:
ggplot() +
geom_sf(data = nc_utm) +
geom_sf(data = area_1, fill = 'blue', alpha = 0.3) +
geom_sf(data = area_2, fill = "red", alpha = 0.3) +
geom_sf(data = area_3, fill = "yellow", alpha = 0.3) +
geom_sf(data = grid_1, colour = "blue") +
geom_sf(data = grid_2, colour = "red") +
geom_sf(data = all_grids, colour = "purple", size = 2) +
coord_sf(datum = "+proj=utm +zone=18 +datum=NAD83 +unit=m",
xlim = c(-10000, 30000), ylim = c(3940000, 4001000))
[![enter image description here][1]][1]
[1]: https://i.stack.imgur.com/gERYZ.png
</details>
通过集体智慧和协作来改善编程学习和解决问题的方式。致力于成为全球开发者共同参与的知识库,让每个人都能够通过互相帮助和分享经验来进步。
评论