将表格从纵向整合到横向,高效地完成。

huangapple go评论98阅读模式
英文:

Consolidate table from vertical to horizontal efficiently

问题

在多个ID上具有唯一特征的大表格(表A)。是否有巧妙的方法可以横向合并这些值,以便在第二个表B中,行中有唯一的ID,并且列中包含出现的特征(每个ID中也可能以不同数量出现)?我希望在ID行中缺少特征的字段填充为NA。由于每个ID最多具有22个唯一特征,所以最大的列数应该是23(包括ID)。

使用循环可以实现,但需要很长时间。

我尝试了https://stackoverflow.com/q/5890584 中的所有解决方案都没有成功。

例如,对于reshapecastdcast和其他函数,向量太大,导致以下错误:
Error: cannot allocate vector of size ...

将表格从纵向整合到横向,高效地完成。
将表格从纵向整合到横向,高效地完成。

英文:

I have a large table with unique characteristics that occur on multiple IDs (table A).
Is there a clever workaround in which I could horizontally consolidate the values so that in the second table B I have unique IDs in the rows and in the columns occurring characteristics (which also occur in different numbers per ID)? The fields for missing features in an ID row I want to fill with NA. Since I have a maximum of 22 unique characteristics per ID, the maximum number of columns should be 23 (with ID).

With the loop it works, but it takes forever.

I tried all solutions from https://stackoverflow.com/q/5890584 without success.

E.g., for reshape, cast, dcast, and other functions the vector
is too large giving:
Error: cannot allocate vector of size ...

将表格从纵向整合到横向,高效地完成。
将表格从纵向整合到横向,高效地完成。

答案1

得分: 1

如果您在表A中创建新列,那么您可以很容易地使用 pivot_wider

library(tidyverse)

table_a <- tibble(
  id = c(1, 1, 2, 2, 2, 2, 3, 3, 3), 
  feature = c("df", "ftv", "ed", "wed", "rfc", "dtb", "bes", "xrd", "yws")
)

table_b <- table_a %>%
  group_by(id) %>%
  mutate(feature_name = paste0("feature", row_number())) %>%
  pivot_wider(names_from = feature_name, values_from = feature)
  
table_b
# A tibble: 3 x 5
# Groups:   id [3]
     id feature1 feature2 feature3 feature4
  <dbl> <chr>    <chr>    <chr>    <chr>   
1     1 df       ftv      NA       NA      
2     2 ed       wed      rfc      dtb     
3     3 bes      xrd      yws      NA     
英文:

If you create a new column in Table A then you can use pivot_wider quite easily:

library(tidyverse)

table_a &lt;- tibble(
  id = c(1, 1, 2, 2, 2, 2, 3, 3, 3), 
  feature = c(&quot;df&quot;, &quot;ftv&quot;, &quot;ed&quot;, &quot;wed&quot;, &quot;rfc&quot;, &quot;dtb&quot;, &quot;bes&quot;, &quot;xrd&quot;, &quot;yws&quot;)
)

table_b &lt;- table_a %&gt;%
  group_by(id) %&gt;%
  mutate(feature_name = paste0(&quot;feature&quot;, row_number())) %&gt;%
  pivot_wider(names_from = feature_name, values_from = feature)
  
table_b
# A tibble: 3 &#215; 5
# Groups:   id [3]
     id feature1 feature2 feature3 feature4
  &lt;dbl&gt; &lt;chr&gt;    &lt;chr&gt;    &lt;chr&gt;    &lt;chr&gt;   
1     1 df       ftv      NA       NA      
2     2 ed       wed      rfc      dtb     
3     3 bes      xrd      yws      NA     

huangapple
  • 本文由 发表于 2023年6月5日 22:44:59
  • 转载请务必保留本文链接:https://go.coder-hub.com/76407610.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定