使用Plotly绘制单一跟踪线,并配备两个y轴。

huangapple go评论70阅读模式
英文:

Plotly plot single trace with 2 yaxis

问题

我有一个Plotly图形对象的柱状图,我想要显示两个y轴(不同的货币,所以转换因子是恒定的)。

目前,我每次绘制一个踪迹,而对于第二个踪迹,我将不透明度设置为0,禁用图例和悬停信息。这个方法虽然可行,但维护起来有些繁琐。

我了解https://plotly.com/python/multiple-axes/。

我的当前解决方案如下:

import pandas as pd
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots

# 制造一些数据
dates = pd.DataFrame(pd.date_range('1/1/2023','1/7/2023'), columns=['date'])
dates["key"] = 0
items = pd.DataFrame(["A","B","C"], columns=['items'])
items["key"] = 0
df = dates.merge(items,on="key",how="outer").drop("key",axis=1)
df['price_USD'] = np.random.randint(0, 100, df.shape[0])
df['price_EURO'] = df['price_USD']/1.5

fig = make_subplots(specs=[[{"secondary_y": True}]])  
for item, _df in df.groupby("items",sort=True):
    ## 在这里可以手动设置各个项目的颜色
    fig.add_trace(
                go.Bar(
                    x=_df["date"],
                    y=_df["price_USD"],
                    showlegend=True,
                    name=item,
                    opacity=1.0,
                    #color=color,
                    legendgroup=item

                ),
                secondary_y=False,
            )

    # 隐形的踪迹
    fig.add_trace(
                go.Bar(
                    x=_df["date"],
                    y=_df["price_EURO"],
                    showlegend=False,
                    opacity=0.0,
                    name="",
                    hoverinfo="skip",
                    legendgroup=item
                ),
                secondary_y=True,
            )

fig.update_layout(barmode="stack")
fig.update_yaxes(title_text="<b>Cost USD", secondary_y=False)
fig.update_yaxes(title_text="<b>Cost Euro", showgrid=False, secondary_y=True)
fig.show()

使用Plotly绘制单一跟踪线,并配备两个y轴。

是否有更简洁的方法来做这个?

英文:

I have a plotly graph object bar chart for which I want to display 2 y-axis (different currencies, so the conversion factor ist constant).

Currently I plot 1 trace each, while for the second one I set opacity to 0, disable the legend and hoverinfo. This hack works, but is ugly to maintain.

I'm aware of https://plotly.com/python/multiple-axes/

my current solution looks like this

import pandas as pd
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots

# make up some data
dates = pd.DataFrame(pd.date_range(&#39;1/1/2023&#39;,&#39;1/7/2023&#39;), columns=[&#39;date&#39;])
dates[&quot;key&quot;] = 0
items = pd.DataFrame([&quot;A&quot;,&quot;B&quot;,&quot;C&quot;], columns=[&#39;items&#39;])
items[&quot;key&quot;] = 0
df = dates.merge(items,on=&quot;key&quot;,how=&quot;outer&quot;).drop(&quot;key&quot;,axis=1)
df[&#39;price_USD&#39;] = np.random.randint(0, 100, df.shape[0])
df[&#39;price_EURO&#39;] = df[&#39;price_USD&#39;]/1.5

fig = make_subplots(specs=[[{&quot;secondary_y&quot;: True}]])  
for item, _df in df.groupby(&quot;items&quot;,sort=True):
	## we may set the colors of the individual items manually here
	fig.add_trace(
				go.Bar(
					x=_df[&quot;date&quot;],
					y=_df[&quot;price_USD&quot;],
					showlegend=True,
					name=item,
					opacity=1.0,
					#color=color,
					legendgroup=item

				),
				secondary_y=False,
			)

	# invisible trace
	fig.add_trace(
				go.Bar(
					x=_df[&quot;date&quot;],
					y=_df[&quot;price_EURO&quot;],
					showlegend=False,
					opacity=0.0,
					name=&quot;&quot;,
					hoverinfo=&quot;skip&quot;,
					legendgroup=item
				),
				secondary_y=True,
			)

fig.update_layout(barmode=&quot;stack&quot;)
fig.update_yaxes(title_text=&quot;&lt;b&gt;Cost USD&quot;, secondary_y=False)
fig.update_yaxes(title_text=&quot;&lt;b&gt;Cost Euro&quot;, showgrid=False, secondary_y=True)
fig.show()

使用Plotly绘制单一跟踪线,并配备两个y轴。

Is there a cleaner way to do this?

答案1

得分: 5

可以使用另一边作为scaleanchor并提供缩放然后不再需要加倍数据
英文:

One can use the other side as a scaleanchor and provide the scaling. Doubling the data is then not necessary anymore.

import pandas as pd
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots
np.random.seed(1)

RATIO = 1.5

# make up some data
dates = pd.DataFrame(pd.date_range(&#39;1/1/2023&#39;,&#39;1/7/2023&#39;), columns=[&#39;date&#39;])
dates[&quot;key&quot;] = 0
items = pd.DataFrame([&quot;A&quot;,&quot;B&quot;,&quot;C&quot;], columns=[&#39;items&#39;])
items[&quot;key&quot;] = 0
df = dates.merge(items,on=&quot;key&quot;,how=&quot;outer&quot;).drop(&quot;key&quot;,axis=1)
df[&#39;price_USD&#39;] = np.random.randint(0, 100, df.shape[0])

# This is not needed more, at least for displaying it
#df[&#39;price_EURO&#39;] = df[&#39;price_USD&#39;]/ RATIO

fig = make_subplots(specs=[[{&quot;secondary_y&quot;: True}]])  
for item, _df in df.groupby(&quot;items&quot;,sort=True):
    ## we may set the colors of the individual items manually here
    fig.add_trace(
                go.Bar(
                    x=_df[&quot;date&quot;],
                    y=_df[&quot;price_USD&quot;],
                    showlegend=True,
                    name=item,
                    opacity=1.0,
                    #color=color,
                    legendgroup=item

                ),
                secondary_y=False,

            )
 
# Add a dummy trace to activate the second axis  
fig.add_trace(
            go.Bar(visible=False),
            secondary_y=True,
        )
fig.update_layout(barmode=&quot;stack&quot;)
fig.update_yaxes(title_text=&quot;&lt;b&gt;Cost USD&quot;, secondary_y=False)
fig.update_yaxes(title_text=&quot;&lt;b&gt;Cost Euro&quot;, showgrid=False, secondary_y=True)
# Set scale according to the other axis and the defined ratio
# the constraint assures that it is bottom aligned
fig.update_layout(yaxis2=dict(scaleanchor=&quot;y1&quot;, scaleratio=RATIO, constraintoward=&quot;bottom&quot;))
fig.show()

使用Plotly绘制单一跟踪线,并配备两个y轴。

huangapple
  • 本文由 发表于 2023年6月5日 15:42:06
  • 转载请务必保留本文链接:https://go.coder-hub.com/76404397.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定