如何在R中连续连接整数向量。

huangapple go评论106阅读模式
英文:

How to consecutively concatenate a vector of integers in R

问题

  1. vec <- c(1, 3, 2, 37)
  2. 我想要按顺序连接这个向量,使输出看起来类似于这样:
  3. > output
  4. [[1]]
  5. [1] 1
  6. [[2]]
  7. [1] 1 3
  8. [[3]]
  9. [1] 1 3 2
  10. [[4]]
  11. [1] 1 3 2 37
  12. 我写了一个函数来做到这一点,但它没有给我正确的输出:
  13. myfun <- function(vec){
  14. output = vector("list", length(vec))
  15. output[[1]] = vec[1]
  16. for(i in 2:length(vec)){
  17. output[[i]] = paste(output[[i - 1]], vec[i])
  18. output[[i]] = as.numeric(strsplit(output[[i]], " ")[[1]])
  19. }
  20. return(output)
  21. }
  22. > myfun(c(1, 3, 2, 37))
  23. [[1]]
  24. [1] 1
  25. [[2]]
  26. [1] 1 3
  27. [[3]]
  28. [1] 1 2
  29. [[4]]
  30. [1] 1 37
英文:
  1. vec &lt;- c(1, 3, 2, 37)

I want to consecutively concatenate this vector such that the output looks something like this:

  1. &gt; output
  2. [[1]]
  3. [1] 1
  4. [[2]]
  5. [1] 1 3
  6. [[3]]
  7. [1] 1 3 2
  8. [[4]]
  9. [1] 1 3 2 37

I wrote a function to do this, but it didn't give me the correct output:

  1. myfun &lt;- function(vec){
  2. output = vector(&quot;list&quot;, length(vec))
  3. output[[1]] = vec[1]
  4. for(i in 2:length(vec)){
  5. output[[i]] = paste(output[[i - 1]], vec[i])
  6. output[[i]] = as.numeric(strsplit(output[[i]], &quot; &quot;)[[1]])
  7. }
  8. return(output)
  9. }
  10. &gt; myfun(c(1, 3, 2, 37))
  11. [[1]]
  12. [1] 1
  13. [[2]]
  14. [1] 1 3
  15. [[3]]
  16. [1] 1 2
  17. [[4]]
  18. [1] 1 37

答案1

得分: 5

A direct way to do this would be Reduce:

  1. Reduce(f = c, x = vec, accumulate = TRUE)

There's a purrr::accumulate function that will accomplish the same thing:

  1. purrr::accumulate(.x = vec, .f = c, .simplify = FALSE)

(Edited to incorporate the comment to just use c() as the function, much simpler.)

英文:

A direct way to do this would be Reduce:

  1. Reduce(f = c,x = vec,accumulate = TRUE)

There's a purrr::accumulate function what will accomplish the same thing:

  1. purrr::accumulate(.x = vec,.f = c,.simplify = FALSE)

(Edited to incorporate the comment to just use c() as the function, much simpler.)

答案2

得分: 4

  1. 我们可以使用 `lapply` `head`(或 `[`) 来实现:
  2. ```r
  3. lapply(seq_along(vec), head, x = vec)
  4. # [[1]]
  5. # [1] 1
  6. # [[2]]
  7. # [1] 1 3
  8. # [[3]]
  9. # [1] 1 3 2
  10. # [[4]]
  11. # [1] 1 3 2 37
  • seq_along(vec) 类似于 1:length(vec)(我们也可以使用这个,但在一些特殊情况下,seq_along 更安全);
  • lapply 被传递一个函数时,它通常会调用它一次,第一个参数包含值(这将是 1 到 4,依次递增);由于我们包括了 x=vec(这是 head 的第一个参数),因此 lapply 将数字作为下一个参数应用于 head,这恰好是 n=

我们也可以使用 lapply(seq_along(vec), function(z) vec[1:z]) 来实现。


编辑:后者(vec[1:z] 的实现)比使用 head 要快得多,我应该知道这一点。

  1. bench::mark(
  2. a1=lapply(seq_along(vec), head, x = vec),
  3. a2=lapply(seq_along(vec), function(z) vec[1:z]),
  4. a3=lapply(1:length(vec), function(z) vec[1:z]),
  5. b=Reduce(f = c,x = vec,accumulate = TRUE),
  6. iterations = 100000)
  7. # # 一个 tibble: 4 × 13
  8. # expression min median `itr/sec` mem_alloc `gc/sec` n_itr n_gc total_time result memory time
  9. # <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl> <int> <dbl> <bch:tm> <list> <list> <list>
  10. # 1 a1 11.51µs 16.14µs 53800. 0B 3.23 99994 6 1.86s <list [4]> <Rprofmem> <bench_tm>
  11. # 2 a2 2.95µs 4.06µs 215605. 0B 4.31 99998 2 463.8ms <list [4]> <Rprofmem> <bench_tm>
  12. # 3 a3 3.04µs 4.01µs 221482. 0B 2.21 99999 1 451.5ms <list [4]> <Rprofmem> <bench_tm>
  13. # 4 b 3.42µs 4.3µs 209810. 0B 4.20 99998 2 476.61ms <list [4]> <Rprofmem> <bench_tm>
  14. # # ℹ 1 more variable: gc <list>
英文:

We can use lapply and head (or [) for this:

  1. lapply(seq_along(vec), head, x = vec)
  2. # [[1]]
  3. # [1] 1
  4. # [[2]]
  5. # [1] 1 3
  6. # [[3]]
  7. # [1] 1 3 2
  8. # [[4]]
  9. # [1] 1 3 2 37
  • seq_along(vec) is analogous to 1:length(vec) (and we can use that too, but seq_along is safer in corner-cases);
  • when lapply is given a function, it normally calls it once with the first argument containing the value (which will be 1 through 4, consecutively); since we include x=vec (which is the first argument of head), then lapply applies the number as the next argument to head, which happens to be n=.

We could also have done lapply(seq_along(vec), function(z) vec[1:z]).


Edit: the latter (vec[1:z] implementation) is significantly faster than using head, I should have known that.

  1. bench::mark(
  2. a1=lapply(seq_along(vec), head, x = vec),
  3. a2=lapply(seq_along(vec), function(z) vec[1:z]),
  4. a3=lapply(1:length(vec), function(z) vec[1:z]),
  5. b=Reduce(f = c,x = vec,accumulate = TRUE),
  6. iterations = 100000)
  7. # # A tibble: 4 &#215; 13
  8. # expression min median `itr/sec` mem_alloc `gc/sec` n_itr n_gc total_time result memory time
  9. # &lt;bch:expr&gt; &lt;bch:tm&gt; &lt;bch:tm&gt; &lt;dbl&gt; &lt;bch:byt&gt; &lt;dbl&gt; &lt;int&gt; &lt;dbl&gt; &lt;bch:tm&gt; &lt;list&gt; &lt;list&gt; &lt;list&gt;
  10. # 1 a1 11.51&#181;s 16.14&#181;s 53800. 0B 3.23 99994 6 1.86s &lt;list [4]&gt; &lt;Rprofmem&gt; &lt;bench_tm&gt;
  11. # 2 a2 2.95&#181;s 4.06&#181;s 215605. 0B 4.31 99998 2 463.8ms &lt;list [4]&gt; &lt;Rprofmem&gt; &lt;bench_tm&gt;
  12. # 3 a3 3.04&#181;s 4.01&#181;s 221482. 0B 2.21 99999 1 451.5ms &lt;list [4]&gt; &lt;Rprofmem&gt; &lt;bench_tm&gt;
  13. # 4 b 3.42&#181;s 4.3&#181;s 209810. 0B 4.20 99998 2 476.61ms &lt;list [4]&gt; &lt;Rprofmem&gt; &lt;bench_tm&gt;
  14. # # ℹ 1 more variable: gc &lt;list&gt;

答案3

得分: 1

我无法想到比Reduce(由@joran)或lapply(由@r2evans)更好的解决方案,它们已经足够高效和简洁。


以下是另一个基本的R选项,只是为了好玩

  1. &gt; split(vec[(k &lt;- sequence(seq_along(vec)))], cumsum(k == 1))
  2. $`1`
  3. [1] 1
  4. $`2`
  5. [1] 1 3
  6. $`3`
  7. [1] 1 3 2
  8. $`4`
  9. [1] 1 3 2 37
英文:

I cannot think of better solutions than Reduce (by @joran) or lapply (by @r2evans), which are already sufficiently efficient and concise.


Here is another base R option but just for fun

  1. &gt; split(vec[(k &lt;- sequence(seq_along(vec)))], cumsum(k == 1))
  2. $`1`
  3. [1] 1
  4. $`2`
  5. [1] 1 3
  6. $`3`
  7. [1] 1 3 2
  8. $`4`
  9. [1] 1 3 2 37

答案4

得分: 0

如果这样做的原因是为了以后可以迭代列表,例如计算总和:

  1. L <- list(vec[1], vec[1:2], vec[1:3], vec[1:4])
  2. sapply(L, sum)
  3. ## [1] 1 4 6 43

那么我们可以通过使用rollapplyr来避免首先创建L:

  1. library(zoo)
  2. rollapplyr(vec, seq_along(vec), sum) # 相同结果但没有中间列表L
  3. ## [1] 1 4 6 43

注意

从问题中提取的vec:

  1. vec <- c(1, 3, 2, 37)
英文:

If the reason to do this is so that you can iterate over the list later taking, for example, sums

  1. L &lt;- list(vec[1], vec[1:2], vec[1:3], vec[1:4])
  2. sapply(L, sum)
  3. ## [1] 1 4 6 43

then we can avoid creating L in the first place by using rollapplyr:

  1. library(zoo)
  2. rollapplyr(vec, seq_along(vec), sum) # same but no intermediate L
  3. ## [1] 1 4 6 43

Note

vec taken from the question

  1. vec &lt;- c(1, 3, 2, 37)

答案5

得分: 0

另一种使用base R的方法,仅为了完整性而使用matrix

  1. mat <- matrix(vec, nrow=length(vec), ncol=length(vec), byrow=T)
  2. mat[upper.tri(mat)] <- NA
  3. apply(mat, 1, \(x) as.vector(na.omit(x)))
  4. [[1]]
  5. [1] 1
  6. [[2]]
  7. [1] 1 3
  8. [[3]]
  9. [1] 1 3 2
  10. [[4]]
  11. [1] 1 3 2 37
英文:

Another base R approach using matrix just for completeness

  1. mat &lt;- matrix(vec, nrow=length(vec), ncol=length(vec), byrow=T)
  2. mat[upper.tri(mat)] &lt;- NA
  3. apply(mat, 1, \(x) as.vector(na.omit(x)))
  4. [[1]]
  5. [1] 1
  6. [[2]]
  7. [1] 1 3
  8. [[3]]
  9. [1] 1 3 2
  10. [[4]]
  11. [1] 1 3 2 37

huangapple
  • 本文由 发表于 2023年6月5日 04:25:22
  • 转载请务必保留本文链接:https://go.coder-hub.com/76402276.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定