我无法理解这些行代码。有人可以帮忙解释一下吗?

huangapple go评论71阅读模式
英文:

I can't seem to understand these lines of code. Can someone please explain it to me?

问题

我遇到了这段代码,但似乎无法理解它。

label_seg = np.zeros(img.shape, dtype=np.uint8)
for i in range(mask_labels.shape[0]):
    label_seg[np.all(img == list(mask_labels.iloc[i, [1,2,3]]), axis=-1)] = i
    label_seg = label_seg[:,:,0]

我尝试分解它,但仍然没有得出很好的理解。

英文:

I came accros this piece of code and i cant seem to understand it.

label_seg = np.zeros(img.shape,dtype=np.uint8)
for i in range(mask_labels.shape[0]):
    label_seg[np.all(img == list(mask_labels.iloc[i, [1,2,3]]), axis=-1)] = i
    label_seg = label_seg[:,:,0]

i tried breaking it down but then ive still not come up with any good understanding

答案1

得分: 1

这段代码的作用是比较一个三通道图像(例如RGB图像)与一个名为mask_labels的DataFrame中的已知颜色,然后将颜色的索引赋值给一个新的数组label_seg,以识别匹配的颜色。

代码中可能存在一些错误:

  • 最后一行不应该在for循环内部。
  • DataFrame的第一行/颜色映射到0,这也是输入的默认值。

使用示例:

np.random.seed(0)

img = np.random.randint(0, 255, (5, 5, 3))

mask_labels = pd.DataFrame([[0,  58, 193, 230],
                            [0, 127,  32,  31],
                            [0, 193,   9, 185],
                           ])

# 生成与输入图像相同形状的输出
label_seg = np.zeros(img.shape, dtype=np.uint8)

# 对于DataFrame中的每一行
for i in range(mask_labels.shape[0]):
    # 取前3列(即列1,2,3)
    # 如果img数组中的所有3个值匹配(相同的x/y位置,所有3个通道)
    # 在输出数组中相同的x/y位置上赋值为行索引
    label_seg[np.all(img == list(mask_labels.iloc[i, [1,2,3]]), axis=-1)] = i

label_seg = label_seg[:,:,0]

输出 label_seg:

array([[0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0],
       [0, 0, 2, 1, 0],
       [0, 0, 0, 0, 0]], dtype=uint8)

img(作为图像,每个单元格是一个像素):

我无法理解这些行代码。有人可以帮忙解释一下吗?

mask_labels

   0    1    2    3
0  0   58  193  230
1  0  127   32   31
2  0  193    9  185

作为颜色:

我无法理解这些行代码。有人可以帮忙解释一下吗?

英文:

My (wild) guess, since your didn't provide an example of input.

This code takes a 3 channels image img (e.g. RGB) and compares it against known colors in a DataFrame mask_labels, then assigns the index of the color in a new array label_seg to identify the matches.

I believe there are some mistakes in the code:

  • the last line shouldn't be part of the for loop
  • the first row/color of the DataFrame is mapped to 0, which is also the default value in the input.

Example of use:

np.random.seed(0)

img = np.random.randint(0, 255, (5, 5, 3))

mask_labels = pd.DataFrame([[0,  58, 193, 230],
                            [0, 127,  32,  31],
                            [0, 193,   9, 185],
                           ])

# generate an output of the same shape as the input image
label_seg = np.zeros(img.shape, dtype=np.uint8)

# for each row in the DataFrame
for i in range(mask_labels.shape[0]):
    # take the columns 1,2,3
    # if all 3 values match in the img array (same x/y position, all 3 channels)
    # assign the row index in the output array at the same x/y position
    label_seg[np.all(img == list(mask_labels.iloc[i, [1,2,3]]), axis=-1)] = i

label_seg = label_seg[:,:,0]

Output label_seg:

array([[0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0],
       [0, 0, 2, 1, 0],
       [0, 0, 0, 0, 0]], dtype=uint8)

img (as image, each cell is a pixel):

我无法理解这些行代码。有人可以帮忙解释一下吗?

masked_labels:

   0    1    2    3
0  0   58  193  230
1  0  127   32   31
2  0  193    9  185

as colors:

我无法理解这些行代码。有人可以帮忙解释一下吗?

huangapple
  • 本文由 发表于 2023年6月5日 03:47:26
  • 转载请务必保留本文链接:https://go.coder-hub.com/76402141.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定