如何循环遍历重叠的多边形并从每个多边形中随机抽样点在 R 中。

huangapple go评论64阅读模式
英文:

How to loop through polygons that overlap and randomly sample points from each in r

问题

有没有办法使用st_sample从重叠的各个多边形中随机抽取5个点?我希望被抽取的点继承来自它们所属多边形的属性。

# 创建一个空列表来存储结果
empty_list <- list()

# 遍历每个唯一的多边形并从中抽取5个点
for (i in used_buff_1k$unique_id) {
  empty_list <- st_sample(used_buff_1k, size = rep(5, nrow(used_buff_1k)), type = "random")
}

这样创建了一个包含50个点的列表(每个多边形中抽取了5个),但它没有继承属性,只是生成了一个点的列表。看起来这可能产生了我想要的结果,但由于它没有循环遍历每个唯一的多边形并单独抽样,所以似乎没有办法将哪些随机点与哪些多边形关联起来。

英文:

Is there a way to randomly sample 5 points from individual polygons using st_sample if those polygons overlap? I want the sampled points to inherit the attributes from the polygons they are sampled from.

# create an empty list to store results
empty_list &lt;- list()

# loop through each unique polygon and sample 5 points from each
for(i in used_buff_1k$unique_id[i]) {
  empty_list &lt;- st_sample(used_buff_1k, size = rep(5, nrow(used_buff_1k)), type = &quot;random&quot;)
}

This created a list of 50 points (5 from 10 polygons), but it doesnt inherit the attributes, it just produced a list of points. It looks like this may have produced what I wanted, but since it didnt loop through each unique polygon and sample individually, there seems to be no way for me to link up which random points go with each polygon.

答案1

得分: 0

如果 tidyverse 方法可行,我们可以在 mutate() 中使用 purrr::map() 来为每个多边形生成一个包含 5 个样本点的列表。当结果的列表列被展开时,我们将得到一个包含多边形和点的 sf 对象,每个采样点都有一行,以及原始多边形 sf 的所有属性。现在我们可以切换几何图形到点列,并删除我们不需要的列。

library(sf)
library(dplyr)
library(ggplot2)
library(tidyr)

# 生成示例数据,5个重叠的圆 + id 属性
set.seed(42)
c_df <- list(matrix(c(0,0,10,0,10,10,0,10,0,0),ncol=2, byrow=TRUE)) %>%
  st_polygon() %>%
  st_sample(size = 5) %>%
  st_buffer(4) %>%
  st_as_sf() %>%
  st_set_geometry("geometry") %>%
  mutate(id = row_number()) %>%
  as_tibble() %>% st_as_sf()

c_df
#> Simple feature collection with 5 features and 1 field
#> Geometry type: POLYGON
#> Dimension:     XY
#> Bounding box:  xmin: -1.138605 ymin: -2.653334 xmax: 13.37075 ymax: 11.36588
#> CRS:           NA
#> # A tibble: 5 × 2
#>                                                                   geometry    id
#>                                                                  <POLYGON> <int>
#> 1 ((13.14806 5.190959, 13.14258 4.981616, 13.12615 4.772846, 13.09881 4.5…)     1
#> 2 ((13.37075 7.365883, 13.36527 7.156539, 13.34884 6.947769, 13.32151 6.7…)     2
#> 3 ((6.861395 1.346666, 6.855913 1.137322, 6.839483 0.9285521, 6.812149 0.…)     3
#> 4 ((12.30448 6.569923, 12.29899 6.360579, 12.28256 6.151809, 12.25523 5.9…)     4
#> 5 ((10.41746 7.050648, 10.41197 6.841304, 10.39554 6.632534, 10.36821 6.4…)     5

# 从每个多边形中采样 5 个点,得到一个 5 × 3 的 tibble,点存储在一个列表列中
# 展开 sample_points 列的列表,得到一个 25 × 3 的 tibble
# 切换几何列;结果的 sf 对象包括 poly_id,表示多边形的 id
sampled_points <- c_df %>%
  mutate(sample_points = purrr::map(geometry, st_sample, 5)) %>%
  unnest_longer(sample_points) %>%
  st_set_geometry("sample_points") %>%
  select(poly_id = id)

结果:

sampled_points
#> Simple feature collection with 25 features and 1 field
#> Geometry type: POINT
#> Dimension:     XY
#> Bounding box:  xmin: 3.755624 ymin: 0.01408366 xmax: 13.28189 ymax: 9.854324
#> CRS:           NA
#> # A tibble: 25 × 2
#>    poly_id       sample_points
#>      <int>             <POINT>
#>  1       1 (8.809995 9.016771)
#>  2       1 (10.90096 2.130858)
#>  3       1 (12.62544 4.990936)
#>  4       1 (7.191491 5.673621)
#>  5       1 (8.846403 8.423211)
#>  6       2  (13.28189 6.94164)
#>  7       2 (6.030255 9.266648)
#>  8       2 (9.484448 9.854324)
#>  9       2 (8.492382 6.470749)
#> 10       2 (12.61666 8.847241)
#> # ℹ 15 more rows

mutate(sampled_points, poly_id = as.factor(poly_id)) %>%
  ggplot() +
  geom_sf(data = mutate(c_df, id = as.factor(id)), aes(fill = id), alpha = .5) +
  geom_sf_text(aes(label = poly_id), nudge_x = -.25, nudge_y = -.25) +
  geom_sf(aes(fill = poly_id), shape = 21, size = 3) +
  scale_fill_viridis_d() +
  scale_color_viridis_d() +
  theme_void()

如何循环遍历重叠的多边形并从每个多边形中随机抽样点在 R 中。

英文:

If tidyverse methods are OK, we could use purrr::map() in mutate() to generate a list of 5 sample points for each polygon. When resulting list-column is unnested, we will have a sf object with polygons and points, rows for each sampled point and all attributes of the original polygon sf. We can now switch the geometry to points column and drop columns we don't need.

library(sf)
library(dplyr)
library(ggplot2)
library(tidyr)

# generate sample data, 5 overlapping circles + id attribute
set.seed(42)
c_df &lt;- list(matrix(c(0,0,10,0,10,10,0,10,0,0),ncol=2, byrow=TRUE)) %&gt;% 
  st_polygon() %&gt;% 
  st_sample(size = 5) %&gt;% 
  st_buffer(4) %&gt;% 
  st_as_sf() %&gt;% 
  st_set_geometry(&quot;geometry&quot;) %&gt;% 
  mutate(id = row_number()) %&gt;% 
  as_tibble() %&gt;% st_as_sf()

c_df
#&gt; Simple feature collection with 5 features and 1 field
#&gt; Geometry type: POLYGON
#&gt; Dimension:     XY
#&gt; Bounding box:  xmin: -1.138605 ymin: -2.653334 xmax: 13.37075 ymax: 11.36588
#&gt; CRS:           NA
#&gt; # A tibble: 5 &#215; 2
#&gt;                                                                   geometry    id
#&gt;                                                                  &lt;POLYGON&gt; &lt;int&gt;
#&gt; 1 ((13.14806 5.190959, 13.14258 4.981616, 13.12615 4.772846, 13.09881 4.5…     1
#&gt; 2 ((13.37075 7.365883, 13.36527 7.156539, 13.34884 6.947769, 13.32151 6.7…     2
#&gt; 3 ((6.861395 1.346666, 6.855913 1.137322, 6.839483 0.9285521, 6.812149 0.…     3
#&gt; 4 ((12.30448 6.569923, 12.29899 6.360579, 12.28256 6.151809, 12.25523 5.9…     4
#&gt; 5 ((10.41746 7.050648, 10.41197 6.841304, 10.39554 6.632534, 10.36821 6.4…     5

# sample 5 points from each polygon , 5 &#215; 3 tibble, points are stored in a list-column 
# unnest sample_points list-column, resulting tibble is 25 &#215; 3
# switch geometry column; resulting sf object includes poly_id with polygon id&#39;s
sampled_points &lt;- c_df %&gt;% 
  mutate(sample_points = purrr::map(geometry, st_sample, 5)) %&gt;% 
  unnest_longer(sample_points) %&gt;% 
  st_set_geometry(&quot;sample_points&quot;) %&gt;% 
  select(poly_id = id)

Result:

sampled_points
#&gt; Simple feature collection with 25 features and 1 field
#&gt; Geometry type: POINT
#&gt; Dimension:     XY
#&gt; Bounding box:  xmin: 3.755624 ymin: 0.01408366 xmax: 13.28189 ymax: 9.854324
#&gt; CRS:           NA
#&gt; # A tibble: 25 &#215; 2
#&gt;    poly_id       sample_points
#&gt;      &lt;int&gt;             &lt;POINT&gt;
#&gt;  1       1 (8.809995 9.016771)
#&gt;  2       1 (10.90096 2.130858)
#&gt;  3       1 (12.62544 4.990936)
#&gt;  4       1 (7.191491 5.673621)
#&gt;  5       1 (8.846403 8.423211)
#&gt;  6       2  (13.28189 6.94164)
#&gt;  7       2 (6.030255 9.266648)
#&gt;  8       2 (9.484448 9.854324)
#&gt;  9       2 (8.492382 6.470749)
#&gt; 10       2 (12.61666 8.847241)
#&gt; # ℹ 15 more rows

mutate(sampled_points, poly_id = as.factor(poly_id)) %&gt;% 
  ggplot() +
  geom_sf(data = mutate(c_df, id = as.factor(id)), aes(fill = id), alpha = .5) +
  geom_sf_text(aes(label = poly_id), nudge_x = -.25, nudge_y = -.25) +
  geom_sf(aes(fill = poly_id), shape = 21, size = 3) +
  scale_fill_viridis_d() +
  scale_color_viridis_d() +
  theme_void()

如何循环遍历重叠的多边形并从每个多边形中随机抽样点在 R 中。<!-- -->

<sup>Created on 2023-06-04 with reprex v2.0.2</sup>

huangapple
  • 本文由 发表于 2023年6月5日 01:51:55
  • 转载请务必保留本文链接:https://go.coder-hub.com/76401706.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定