Delaunay三角剖分在绘制两个不等式的交集区域时没有正确构建。

huangapple go评论70阅读模式
英文:

Delaunay triangulation is not correctly constructed when plotting the intersection area of two inequalities

问题

以下是您提供的代码的翻译部分:

在使用NumPyMatplotlibSymPy和SciPy库的代码中有一个名为`plot_inequalities`的函数它旨在使用Delaunay三角剖分绘制两个不等式的交集区域但是在运行代码时Delaunay三角剖分未正确构建以下是代码

import numpy as np
import matplotlib.pyplot as plt
from sympy import *
from scipy.spatial import Delaunay

def plot_inequalities(inequality1, inequality2, x_min, x_max, y_min, y_max):
    x, y = symbols('x y')
    try:
        inequality1_expr = sympify(inequality1)
        inequality2_expr = sympify(inequality2)
    except:
        print("错误:不正确的不等式格式。")
        return

    try:
        F1 = lambdify((x, y), inequality1_expr, 'numpy')
        F2 = lambdify((x, y), inequality2_expr, 'numpy')
    except:
        print("错误:无法编译不等式。")
        return

    # 创建x和y值的网格
    x_vals = np.concatenate(([0], np.linspace(x_min, x_max, 400)))
    y_vals = np.linspace(y_min, y_max, 400)
    X, Y = np.meshgrid(x_vals, y_vals)
    # 在每个网格点处检查不等式
    inequality1_result = F1(X, Y)
    inequality2_result = F2(X, Y)

    # 查找不等式的交点
    intersection_points = []
    for i in range(len(x_vals)):
        for j in range(len(y_vals)):
            if inequality1_result[j, i] < 0 and inequality2_result[j, i] > 0:
                intersection_points.append([x_vals[i], y_vals[j]])

    intersection_points = np.array(intersection_points)

    # 交点的Delaunay三角剖分
    if len(intersection_points) >= 3:
        tri = Delaunay(intersection_points[:, :2])

        # 绘制图形
        plt.triplot(intersection_points[:, 0], intersection_points[:, 1], tri.simplices.copy(), color='black')

    # 显示图形
    plt.xlabel('x')
    plt.ylabel('y')
    plt.grid(False)
    plt.axis('equal')
    plt.xlim(x_min, x_max)
    plt.ylim(y_min, y_max)
    plt.show()
    print("以格式 'F(x, y) > 0' 输入较低的不等式:")
    inequality1 = input()
    print("以格式 'F(x, y) < 0' 输入较高的不等式:")
    inequality2 = input()
    print("以格式 'x_min, x_max' 输入x区间边界:")
    x_min, x_max = map(float, input().split(','))
    print("以格式 'y_min, y_max' 输入y区间边界:")
    y_min, y_max = map(float, input().split(','))

    plot_inequalities(inequality1, inequality2, x_min, x_max, y_min, y_max)

示例区域y-x>0 和 y-x**2<0

请注意,这只是您提供的代码的翻译部分。如果需要更多帮助或有其他问题,请随时提出。

英文:

In the code that uses the NumPy, Matplotlib, SymPy, and SciPy libraries, there is a function called plot_inequalities which is intended to plot the intersection area of two inequalities using Delaunay triangulation. However, when running the code, the Delaunay triangulation is not constructed correctly.Here is code:

import numpy as np
import matplotlib.pyplot as plt
from sympy import *
from scipy.spatial import Delaunay
def plot_inequalities(inequality1, inequality2, x_min, x_max, y_min, y_max):
x, y = symbols(&#39;x y&#39;)
try:
inequality1_expr = sympify(inequality1)
inequality2_expr = sympify(inequality2)
except:
print(&quot;Error: Incorrect inequality format.&quot;)
return
try:
F1 = lambdify((x, y), inequality1_expr, &#39;numpy&#39;)
F2 = lambdify((x, y), inequality2_expr, &#39;numpy&#39;)
except:
print(&quot;Error: Failed to compile inequalities.&quot;)
return
# Create grid of x and y values
x_vals = np.concatenate(([0], np.linspace(x_min, x_max, 400)))
y_vals = np.linspace(y_min, y_max, 400)
X, Y = np.meshgrid(x_vals, y_vals)
# Check inequalities at each grid point
inequality1_result = F1(X, Y)
inequality2_result = F2(X, Y)
# Find intersection points of the inequalities
intersection_points = []
for i in range(len(x_vals)):
for j in range(len(y_vals)):
if inequality1_result[j, i] &lt; 0 and inequality2_result[j, i] &gt; 0:
intersection_points.append([x_vals[i], y_vals[j]])
intersection_points = np.array(intersection_points)
# Delaunay triangulation of intersection points
if len(intersection_points) &gt;= 3:
tri = Delaunay(intersection_points[:, :2])
# Plot the graph
plt.triplot(intersection_points[:, 0], intersection_points[:, 1], tri.simplices.copy(), color=&#39;black&#39;)
# Display the graph
plt.xlabel(&#39;x&#39;)
plt.ylabel(&#39;y&#39;)
plt.grid(False)
plt.axis(&#39;equal&#39;)
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.show()
print(&quot;Enter the lower inequality in the format &#39;F(x, y) &gt; 0&#39;:&quot;)
inequality1 = input()
print(&quot;Enter the upper inequality in the format &#39;F(x, y) &lt; 0&#39;:&quot;)
inequality2 = input()
print(&quot;Enter the x interval boundaries in the format &#39;x_min, x_max&#39;:&quot;)
x_min, x_max = map(float, input().split(&#39;,&#39;))
print(&quot;Enter the y interval boundaries in the format &#39;y_min, y_max&#39;:&quot;)
y_min, y_max = map(float, input().split(&#39;,&#39;))
plot_inequalities(inequality1, inequality2, x_min, x_max, y_min, y_max)

example area: y-x>0 and y-x**2<0

Delaunay三角剖分在绘制两个不等式的交集区域时没有正确构建。

答案1

得分: 1

The issue with the plot_inequalities function is that the intersection_points array is not being properly filtered to remove duplicate points. When the intersection_points array contains duplicate points, the Delaunay triangulation cannot be constructed correctly. To fix this issue, you can add a check to remove duplicate points from the intersection_points array before constructing the Delaunay triangulation.

Here's the updated code:

import numpy as np
import matplotlib.pyplot as plt
from sympy import *
from scipy.spatial import Delaunay
from matplotlib.collections import PolyCollection

def plot_inequalities(inequality1, inequality2, x_min, x_max, y_min, y_max):
    x, y = symbols('x y')
    try:
        inequality1_expr = sympify(inequality1)
        inequality2_expr = sympify(inequality2)
    except:
        print("Error: Incorrect inequality format.")
        return

    try:
        F1 = lambdify((x, y), inequality1_expr, 'numpy')
        F2 = lambdify((x, y), inequality2_expr, 'numpy')
    except:
        print("Error: Failed to compile inequalities.")
        return

    # Create grid of x and y values
    x_vals, y_vals = np.meshgrid(np.linspace(x_min, x_max, 150), np.linspace(y_min, y_max, 400))
    
    # Check inequalities on grid points
    indices = np.where((F1(x_vals, y_vals) < 0) & (F2(x_vals, y_vals) > 0))
    intersection_points = np.column_stack((x_vals[indices], y_vals[indices]))

    # Remove any duplicate points
    intersection_points = np.unique(intersection_points, axis=0)

    # Delaunay triangulation of intersection points
    if len(intersection_points) >= 3:
        tri = Delaunay(intersection_points)

        # Plot the graph
        polys = PolyCollection(intersection_points[tri.simplices], facecolors='none', edgecolors='black')
        fig, ax = plt.subplots()
        ax.add_collection(polys)
        ax.autoscale()
        ax.margins(0.1)
        ax.set_xlabel('x')
        ax.set_ylabel('y')
        ax.set_aspect('equal')
        plt.show()

print("Enter the lower inequality in the format 'F(x, y) > 0':")
inequality1 = "y - x"
print("Enter the upper inequality in the format 'F(x, y) < 0':")
inequality2 = "y - x**2"
print("Enter the x interval boundaries in the format 'x_min, x_max':")
x_min, x_max = map(float, "0,4".split(','))
print("Enter the y interval boundaries in the format 'y_min, y_max':")
y_min, y_max = map(float, "0,4".split(','))

plot_inequalities(inequality1, inequality2, x_min, x_max, y_min, y_max)

With this modification, the intersection_points array is first converted to a numpy array and then filtered using the unique function to remove any duplicate points. The resulting intersection_points array is then used to construct the Delaunay triangulation and plot the intersection area of the two inequalities.

英文:

The issue with the plot_inequalities function is that the intersection_points array is not being properly filtered to remove duplicate points. When the intersection_points array contains duplicate points, the Delaunay triangulation cannot be constructed correctly. To fix this issue, you can add a check to remove duplicate points from the intersection_points array before constructing the Delaunay triangulation.

Here's the updated code:

import numpy as np
import matplotlib.pyplot as plt
from sympy import *
from scipy.spatial import Delaunay
from matplotlib.collections import PolyCollection
def plot_inequalities(inequality1, inequality2, x_min, x_max, y_min, y_max):
x, y = symbols(&#39;x y&#39;)
try:
inequality1_expr = sympify(inequality1)
inequality2_expr = sympify(inequality2)
except:
print(&quot;Error: Incorrect inequality format.&quot;)
return
try:
F1 = lambdify((x, y), inequality1_expr, &#39;numpy&#39;)
F2 = lambdify((x, y), inequality2_expr, &#39;numpy&#39;)
except:
print(&quot;Error: Failed to compile inequalities.&quot;)
return
# Create grid of x and y values
x_vals, y_vals = np.meshgrid(np.linspace(x_min, x_max, 150), np.linspace(y_min, y_max, 400))
# Check inequalities on grid points
indices = np.where((F1(x_vals, y_vals) &lt; 0) &amp; (F2(x_vals, y_vals) &gt; 0))
intersection_points = np.column_stack((x_vals[indices], y_vals[indices]))
# Remove any duplicate points
intersection_points = np.unique(intersection_points, axis=0)
# Delaunay triangulation of intersection points
if len(intersection_points) &gt;= 3:
tri = Delaunay(intersection_points)
# Plot the graph
polys = PolyCollection(intersection_points[tri.simplices], facecolors=&#39;none&#39;, edgecolors=&#39;black&#39;)
fig, ax = plt.subplots()
ax.add_collection(polys)
ax.autoscale()
ax.margins(0.1)
ax.set_xlabel(&#39;x&#39;)
ax.set_ylabel(&#39;y&#39;)
ax.set_aspect(&#39;equal&#39;)
plt.show()
print(&quot;Enter the lower inequality in the format &#39;F(x, y) &gt; 0&#39;:&quot;)
inequality1 = &quot;y - x &quot;
print(&quot;Enter the upper inequality in the format &#39;F(x, y) &lt; 0&#39;:&quot;)
inequality2 = &quot;y - x**2 &quot;
print(&quot;Enter the x interval boundaries in the format &#39;x_min, x_max&#39;:&quot;)
x_min, x_max = map(float, &quot;0,4&quot;.split(&#39;,&#39;))
print(&quot;Enter the y interval boundaries in the format &#39;y_min, y_max&#39;:&quot;)
y_min, y_max = map(float, &quot;0,4&quot;.split(&#39;,&#39;))
plot_inequalities(inequality1, inequality2, x_min, x_max, y_min, y_max)

With this modification, the intersection_points array is first converted to a numpy array and then filtered using the unique function to remove any duplicate points. The resulting intersection_points array is then used to construct the Delaunay triangulation and plot the intersection area of the two inequalities.

P.S. I have hard coded the inequality in the code. You can vary the number of x_vals and y_vals by changing the number of points in np.linspace(x_min, x_max, 150) and np.linspace(y_min, y_max, 400) to see triangulations.

Delaunay三角剖分在绘制两个不等式的交集区域时没有正确构建。

huangapple
  • 本文由 发表于 2023年6月5日 01:32:31
  • 转载请务必保留本文链接:https://go.coder-hub.com/76401637.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定