Speeding up loop for reorganizing pandas DataFrame into numpy array using slicing throws exception – what am I missing?

huangapple go评论76阅读模式
英文:

Speeding up loop for reorganizing pandas DataFrame into numpy array using slicing throws exception - what am I missing?

问题

你可以使用以下代码来优化这个过程,避免使用显式的循环:

import pandas as pd
import numpy as np

# 原始数据
raw_data = pd.DataFrame({
    'date_idx': [0, 1, 2, 0, 1, 2],
    'element_idx': [0, 0, 0, 1, 1, 1],
    'a': [10, 20, 30, 40, 50, 60],
    'b': [11, 21, 31, 41, 51, 61],
    'c': [12, 22, 32, 42, 52, 62],
})

# 定义列名
inputs = ['a', 'b', 'c']

# 获取唯一日期和元素索引值
unique_dates = raw_data['date_idx'].unique()
unique_elements = raw_data['element_idx'].unique()

# 创建一个新的numpy数组
data = np.zeros(shape=(len(unique_dates), len(inputs), len(unique_elements)), dtype=np.float64)

# 使用Pandas的pivot方法来重新排列数据
pivot_data = raw_data.pivot(index='date_idx', columns=['element_idx'], values=inputs)

# 转换为NumPy数组
data = pivot_data.to_numpy()

print(data)

这段代码使用了Pandas的pivot方法,将原始数据重新排列成你所需的形式,然后将其转换为NumPy数组,避免了显式的循环,提高了运行速度。

英文:

I have a pandas DataFrame like so:

raw_data = DataFrame({
    'date_idx': [0, 1, 2, 0, 1, 2],
    'element_idx': [0, 0, 0, 1, 1, 1],
    'a': [10, 20, 30, 40, 50, 60],
    'b': [11, 21, 31, 41, 51, 61],
    'c': [12, 22, 32, 42, 52, 62],
})

I call the columns other than date_idx and element_idx "inputs". I want to reorganize it into a 3d numpy array by date_idx -> input_idx -> element_idx, so that the result is like so:

[[[10. 40.]
  [11. 41.]
  [12. 42.]]

 [[20. 50.]
  [21. 51.]
  [22. 52.]]

 [[30. 60.]
  [31. 61.]
  [32. 62.]]]

I did it with two for loops, and it works well:

date_idx = [0, 1, 2, 0, 1, 2]
element_idx = [0, 0, 0, 1, 1, 1]
raw_data = DataFrame({
    'date_idx': date_idx,
    'element_idx': element_idx,
    'a': [10.0, 20.0, 30.0, 40.0, 50.0, 60.0],
    'b': [11.0, 21.0, 31.0, 41.0, 51.0, 61.0],
    'c': [12.0, 22.0, 32.0, 42.0, 52.0, 62.0],
})

inputs = ['a', 'b', 'c']

unique_dates = set(date_idx)
unique_elements = set(element_idx)
data = np.zeros(shape=(len(unique_dates), len(inputs), len(unique_elements)), dtype=np.float64)

for i in range(len(raw_data)):
    row = raw_data.iloc[i]
    date_idx = int(row['date_idx'])
    element_idx = int(row['element_idx'])

    for input_idx in range(len(inputs)):
        data[date_idx][input_idx][element_idx] = float(row[inputs[input_idx]])

print(data)

However, this is very slow. I have millions of entries for the date_idx array, and dozens for both inputs and element_idx. It takes 7 hours on my machine for this to complete with my real data set.

I have a feeling this could be done with slicing, no loops, but my attempts always fail - I'm missing something.

For example, I tried to eliminate the inner loop with:

for i in range(len(raw_data)):
    row = raw_data.iloc[i]
    date_idx = int(row['date_idx'])
    element_idx = int(row['element_idx'])

    data[date_idx][:][element_idx] = list(dict(row[inputs]).values())

And it fails with:

Traceback (most recent call last):
  File "/home/stark/Work/mmr6/test2.py", line 84, in <module>
    data[date_idx][:][element_idx] = list(dict(row[inputs]).values())
    ~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^
ValueError: could not broadcast input array from shape (3,) into shape (2,)

My question is, can slicing and / or fast technique be used to reorganize this DataFrame in that fashion on the plain numpy array, or do I really need the loops here?

答案1

得分: 0

我认为您正在寻找将数据框架进行枢轴操作,然后将其转换为NumPy数组的方法:

```py
num_unique_elements = raw_data['element_idx'].nunique()
num_unique_inputs = 3 # a, b, c

df = pd.pivot(raw_data, index='date_idx', columns='element_idx')
df = df.stack(level=0)
print(df.to_numpy().reshape(-1, num_unique_inputs, num_unique_elements))

打印输出:

[[[10 40]
  [11 41]
  [12 42]]

 [[20 50]
  [21 51]
  [22 52]]

 [[30 60]
  [31 61]
  [32 62]]]

操作步骤:

df = pd.pivot(raw_data, index='date_idx', columns='element_idx')
print(df)

              a       b       c    
element_idx   0   1   0   1   0   1
date_idx                           
0            10  40  11  41  12  42
1            20  50  21  51  22  52
2            30  60  31  61  32  62

然后使用 .stack() 进行重塑:

df = df.stack(level=0)
print(df)

element_idx   0   1
date_idx           
0        a   10  40
         b   11  41
         c   12  42
1        a   20  50
         b   21  51
         c   22  52
2        a   30  60
         b   31  61
         c   32  62

最后将其转换为NumPy数组:

print(df.to_numpy().reshape(-1, num_unique_inputs, num_unique_elements))

[[[10 40]
  [11 41]
  [12 42]]

 [[20 50]
  [21 51]
  [22 52]]

 [[30 60]
  [31 61]
  [32 62]]]

<details>
<summary>英文:</summary>

I think you&#39;re searching for pivoting the dataframe and then convert it to numpy array:

```py
num_unique_elements = raw_data[&#39;element_idx&#39;].nunique()
num_unique_inputs = 3 # a, b, c

df = pd.pivot(raw_data, index=&#39;date_idx&#39;, columns=&#39;element_idx&#39;)
df = df.stack(level=0)
print(df.to_numpy().reshape(-1, num_unique_inputs, num_unique_elements))

Prints:

[[[10 40]
  [11 41]
  [12 42]]

 [[20 50]
  [21 51]
  [22 52]]

 [[30 60]
  [31 61]
  [32 62]]]

Steps:

df = pd.pivot(raw_data, index=&#39;date_idx&#39;, columns=&#39;element_idx&#39;)
print(df)

              a       b       c    
element_idx   0   1   0   1   0   1
date_idx                           
0            10  40  11  41  12  42
1            20  50  21  51  22  52
2            30  60  31  61  32  62

Then reshape it using .stack()

df = df.stack(level=0)
print(df)

element_idx   0   1
date_idx           
0        a   10  40
         b   11  41
         c   12  42
1        a   20  50
         b   21  51
         c   22  52
2        a   30  60
         b   31  61
         c   32  62

Then convert it to numpy array:

print(df.to_numpy().reshape(-1, num_unique_inputs, num_unique_elements))

[[[10 40]
  [11 41]
  [12 42]]

 [[20 50]
  [21 51]
  [22 52]]

 [[30 60]
  [31 61]
  [32 62]]]

huangapple
  • 本文由 发表于 2023年6月5日 01:12:09
  • 转载请务必保留本文链接:https://go.coder-hub.com/76401543.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定