为什么如果不同方式计算,我会得到不同的p值?

huangapple go评论69阅读模式
英文:

Why do I have different p-values if calculated differently?

问题

以下是您要翻译的内容:

我确实有以下的数据框:

    df <- data.frame(
      Assay = c("Gene1", "Gene2", "Gene3"),
      DT1 = c(1,2,3),
      DT2 = c(4,5,6),
      DT3 = c(4,5,6),
      DT4 = c(0,8,7),
      DT5 = c(-1,2,5),
      DT6 = c(4,5,3),
      DT7 = c(5,2,9),
      DT8 = c(0,0,4),
      DT9 = c(3,6,2),
      DT10 = c(5,9,1),
      DT11 = c(2,3,4),
      DT12 = c(8,1,6)
    )
并且我想要创建一个包含逐行比较的组的p值的列。前5列(2:6)与接下来的7列(7:13):

    # 逐行执行t检验并获取p值
    p_values <- apply(df[, 2:6], 1, function(row) {
      t_test_result <- t.test(row, df[, 7:13])
      t_test_result$p.value
    })
    
    # 将p值列添加到数据框中
    df$p_values <- p_values
    df

对于第一行,当我使用此脚本时,我得到了`0.09335115`的p值,而如果我手动执行:

    t.test(c(1,4,4,0,-1),
           c(4,5,0,3,5,2,8))

我得到的p值是`0.1425`
问题出在哪里?

如果您需要进一步的解释或有其他问题,请随时提出。

英文:

I do have the following dataframe:

df &lt;- data.frame(
  Assay = c(&quot;Gene1&quot;, &quot;Gene2&quot;, &quot;Gene3&quot;),
  DT1 = c(1,2,3),
  DT2 = c(4,5,6),
  DT3 = c(4,5,6),
  DT4 = c(0,8,7),
  DT5 = c(-1,2,5),
  DT6 = c(4,5,3),
  DT7 = c(5,2,9),
  DT8 = c(0,0,4),
  DT9 = c(3,6,2),
  DT10 = c(5,9,1),
  DT11 = c(2,3,4),
  DT12 = c(8,1,6)
)

And I would like to create a column that will contain p-values for groups compared row by row. First 5 columns (2:6) versus Next 7 columns (7:13)

# Perform t-tests row-wise and obtain p-values
p_values &lt;- apply(df[, 2:6], 1, function(row) {
  t_test_result &lt;- t.test(row, df[, 7:13])
  t_test_result$p.value
})

# Add the p-values column to the dataframe
df$p_values &lt;- p_values
df

For the first row when I use this script I have a p-value of 0.09335115 while if I do it manually:

t.test(c(1,4,4,0,-1),
       c(4,5,0,3,5,2,8))

I do have a p-value of 0.1425
What's the issue?

答案1

得分: 2

只返回翻译好的部分:

只需执行:

    p_values <- apply(df[-1], 1, function(row) {
         t_test_result <- t.test(row[1:5], row[6:12])
         t_test_result$p.value
     })
     
    p_values
    [1] 0.1425172 0.6840726 0.3266262
英文:

just do:

p_values &lt;- apply(df[-1], 1, function(row) {
     t_test_result &lt;- t.test(row[1:5], row[6:12])
     t_test_result$p.value
 })
 
p_values
[1] 0.1425172 0.6840726 0.3266262

huangapple
  • 本文由 发表于 2023年6月2日 06:12:05
  • 转载请务必保留本文链接:https://go.coder-hub.com/76386043.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定