Spark Barrier Executor Stage Not Retried on Task Failure

huangapple go评论68阅读模式
英文:

Spark Barrier Executor Stage Not Retried on Task Failure

问题

使用障碍执行器运行阶段时,期望任务失败会导致阶段重试。然而,如果任务引发异常,则不会重试该阶段,作业将失败。

运行下面的pyspark代码将导致一个任务失败,从而导致阶段失败而不进行重试。

这个失败在本地通过pyspark shell和在K8s集群上都能看到。

本地执行的堆栈跟踪:

我怀疑文档不完善的配置可能是问题的原因,但是改变最大失败或重试配置没有带来任何好运。任何建议都将不胜感激,谢谢!

英文:

When running a stage using barrier executor, the expectation is that a failure in a task will result in the stage being retried. However, if an exception is thrown from a task, the stage is not retried and the job fails.

Running the pyspark code below will cause a single task to fail, failing the stage without retrying.

def test_func(index: int) -> list:
    if index == 0:
        raise RuntimeError("Thrown from test func")
    return []

start_rdd = sc.parallelize([i for i in range(10)], 10)
result = start_rdd.barrier().mapPartitionsWithIndex(lambda i, c: test_func(i))

result.collect()

This failure is seen running locally via the pyspark shell and on a K8s cluster.

Stack trace from local execution:

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/opt/homebrew/anaconda3/lib/python3.9/site-packages/pyspark/rdd.py", line 1197, in collect
    sock_info = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
  File "/opt/homebrew/anaconda3/lib/python3.9/site-packages/pyspark/python/lib/py4j-0.10.9.5-src.zip/py4j/java_gateway.py", line 1321, in __call__
  File "/opt/homebrew/anaconda3/lib/python3.9/site-packages/pyspark/sql/utils.py", line 190, in deco
    return f(*a, **kw)
  File "/opt/homebrew/anaconda3/lib/python3.9/site-packages/pyspark/python/lib/py4j-0.10.9.5-src.zip/py4j/protocol.py", line 326, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure: Could not recover from a failed barrier ResultStage. Most recent failure reason: Stage failed because barrier task ResultTask(0, 0) finished unsuccessfully.
org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/opt/homebrew/anaconda3/lib/python3.9/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py", line 686, in main
    process()
  File "/opt/homebrew/anaconda3/lib/python3.9/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py", line 676, in process
    out_iter = func(split_index, iterator)
  File "<stdin>", line 1, in <lambda>
  File "<stdin>", line 3, in test_func
RuntimeError: Thrown from test func


	at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:559)
	at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:765)
	at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:747)
	at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:512)
	at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
	at scala.collection.Iterator.foreach(Iterator.scala:943)
	at scala.collection.Iterator.foreach$(Iterator.scala:943)
	at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
	at scala.collection.generic.Growable.$plus$plus$eq(Growable.scala:62)
	at scala.collection.generic.Growable.$plus$plus$eq$(Growable.scala:53)
	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:105)
	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:49)
	at scala.collection.TraversableOnce.to(TraversableOnce.scala:366)
	at scala.collection.TraversableOnce.to$(TraversableOnce.scala:364)
	at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
	at scala.collection.TraversableOnce.toBuffer(TraversableOnce.scala:358)
	at scala.collection.TraversableOnce.toBuffer$(TraversableOnce.scala:358)
	at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
	at scala.collection.TraversableOnce.toArray(TraversableOnce.scala:345)
	at scala.collection.TraversableOnce.toArray$(TraversableOnce.scala:339)
	at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
	at org.apache.spark.rdd.RDD.$anonfun$collect$2(RDD.scala:1021)
	at org.apache.spark.SparkContext.$anonfun$runJob$5(SparkContext.scala:2268)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
	at org.apache.spark.scheduler.Task.run(Task.scala:136)
	at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:548)
	at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1504)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:551)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	at java.lang.Thread.run(Thread.java:750)


	at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2672)
	at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2608)
	at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2607)
	at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
	at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
	at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
	at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2607)
	at org.apache.spark.scheduler.DAGScheduler.handleTaskCompletion(DAGScheduler.scala:2111)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2857)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2802)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2791)
	at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
	at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:952)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:2228)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:2249)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:2268)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:2293)
	at org.apache.spark.rdd.RDD.$anonfun$collect$1(RDD.scala:1021)
	at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
	at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
	at org.apache.spark.rdd.RDD.withScope(RDD.scala:406)
	at org.apache.spark.rdd.RDD.collect(RDD.scala:1020)
	at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:180)
	at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:498)
	at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
	at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
	at py4j.Gateway.invoke(Gateway.java:282)
	at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
	at py4j.commands.CallCommand.execute(CallCommand.java:79)
	at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
	at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
	at java.lang.Thread.run(Thread.java:750)

I suspect a poorly documented config to be the culprit, but have not had any luck changing the max failure or retry configs. Any suggestions would be great, thanks!

答案1

得分: 0

经过进一步的调试,我发现问题是由于配置错误和期望不符的组合引起的。

首先,错误的期望是,在任务失败时,阶段将会重试。然而,这只有在故障发生在Shuffle Map阶段时才会发生。如果故障发生在结果阶段,作业将被中止。

接下来,在提交给K8s Spark操作器的SparkApplication资源中发生了配置错误,具体来说,restartPolicy被设置为Never

阻塞失败作业和告知Spark操作器在失败时不重试应用程序的组合导致了问题。解决方案是配置一个具有适当重试尝试次数的重试策略。

英文:

After further debugging I found the issue was a combination of incorrect configuration and expectations.

First, the incorrect expectation would be that on task failure, the stage would be retried. However, this only happens if failure happens in a shuffle map stage. If the failure happens in a result stage, the job will be aborted.

Next, misconfiguration was occurring in the SparkApplication resource submitted to the K8s spark operator, specifically, the restartPolicy was being set to Never.

The combination of the barrier failing the job and the spark operator being told not to retry applications on failure lead to the issue. The solution was to configure a restart policy with an appropriate number of retry attempts.

huangapple
  • 本文由 发表于 2023年5月30日 00:38:04
  • 转载请务必保留本文链接:https://go.coder-hub.com/76358986.html
匿名

发表评论

匿名网友

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

确定